Merge pull request !3180 from alashkari/update-aug-ops-2tags/v0.6.0-beta
| @@ -425,7 +425,7 @@ void bindTensorOps1(py::module *m) { | |||
| (void)py::class_<UniformAugOp, TensorOp, std::shared_ptr<UniformAugOp>>( | |||
| *m, "UniformAugOp", "Tensor operation to apply random augmentation(s).") | |||
| .def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("operations"), | |||
| .def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("transforms"), | |||
| py::arg("NumOps") = UniformAugOp::kDefNumOps); | |||
| (void)py::class_<BoundingBoxAugmentOp, TensorOp, std::shared_ptr<BoundingBoxAugmentOp>>( | |||
| @@ -90,9 +90,9 @@ std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size) { | |||
| } | |||
| // Function to create UniformAugOperation. | |||
| std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> operations, | |||
| std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> transforms, | |||
| int32_t num_ops) { | |||
| auto op = std::make_shared<UniformAugOperation>(operations, num_ops); | |||
| auto op = std::make_shared<UniformAugOperation>(transforms, num_ops); | |||
| // Input validation | |||
| if (!op->ValidateParams()) { | |||
| return nullptr; | |||
| @@ -290,14 +290,14 @@ std::shared_ptr<TensorOp> CenterCropOperation::Build() { | |||
| } | |||
| // UniformAugOperation | |||
| UniformAugOperation::UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> operations, int32_t num_ops) | |||
| : operations_(operations), num_ops_(num_ops) {} | |||
| UniformAugOperation::UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops) | |||
| : transforms_(transforms), num_ops_(num_ops) {} | |||
| bool UniformAugOperation::ValidateParams() { return true; } | |||
| std::shared_ptr<TensorOp> UniformAugOperation::Build() { | |||
| std::vector<std::shared_ptr<TensorOp>> tensor_ops; | |||
| (void)std::transform(operations_.begin(), operations_.end(), std::back_inserter(tensor_ops), | |||
| (void)std::transform(transforms_.begin(), transforms_.end(), std::back_inserter(tensor_ops), | |||
| [](std::shared_ptr<TensorOperation> op) -> std::shared_ptr<TensorOp> { return op->Build(); }); | |||
| std::shared_ptr<UniformAugOp> tensor_op = std::make_shared<UniformAugOp>(tensor_ops, num_ops_); | |||
| return tensor_op; | |||
| @@ -108,10 +108,10 @@ std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size); | |||
| /// \brief Function to create a UniformAugment TensorOperation. | |||
| /// \notes Tensor operation to perform randomly selected augmentation. | |||
| /// \param[in] operations - a vector of TensorOperation operations. | |||
| /// \param[in] transforms - a vector of TensorOperation transforms. | |||
| /// \param[in] num_ops - integer representing the number of OPs to be selected and applied. | |||
| /// \return Shared pointer to the current TensorOperation. | |||
| std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> operations, | |||
| std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> transforms, | |||
| int32_t num_ops = 2); | |||
| /// \brief Function to create a RandomHorizontalFlip TensorOperation. | |||
| @@ -264,7 +264,7 @@ class CenterCropOperation : public TensorOperation { | |||
| class UniformAugOperation : public TensorOperation { | |||
| public: | |||
| explicit UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> operations, int32_t num_ops = 2); | |||
| explicit UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops = 2); | |||
| ~UniformAugOperation() = default; | |||
| @@ -273,7 +273,7 @@ class UniformAugOperation : public TensorOperation { | |||
| bool ValidateParams() override; | |||
| private: | |||
| std::vector<std::shared_ptr<TensorOperation>> operations_; | |||
| std::vector<std::shared_ptr<TensorOperation>> transforms_; | |||
| int32_t num_ops_; | |||
| }; | |||
| @@ -722,7 +722,7 @@ class UniformAugment(cde.UniformAugOp): | |||
| Tensor operation to perform randomly selected augmentation. | |||
| Args: | |||
| operations: list of C++ operations (python OPs are not accepted). | |||
| transforms: list of C++ operations (python OPs are not accepted). | |||
| num_ops (int, optional): number of OPs to be selected and applied (default=2). | |||
| Examples: | |||
| @@ -730,7 +730,7 @@ class UniformAugment(cde.UniformAugOp): | |||
| >>> c_transforms.RandomVerticalFlip(), | |||
| >>> c_transforms.RandomColorAdjust(), | |||
| >>> c_transforms.RandomRotation(degrees=45)] | |||
| >>> uni_aug = c_transforms.UniformAugment(operations=transforms_list, num_ops=2) | |||
| >>> uni_aug = c_transforms.UniformAugment(transforms=transforms_list, num_ops=2) | |||
| >>> transforms_all = [c_transforms.Decode(), c_transforms.Resize(size=[224, 224]), | |||
| >>> uni_aug, F.ToTensor()] | |||
| >>> ds_ua = ds.map(input_columns="image", | |||
| @@ -738,10 +738,10 @@ class UniformAugment(cde.UniformAugOp): | |||
| """ | |||
| @check_uniform_augment_cpp | |||
| def __init__(self, operations, num_ops=2): | |||
| self.operations = operations | |||
| def __init__(self, transforms, num_ops=2): | |||
| self.transforms = transforms | |||
| self.num_ops = num_ops | |||
| super().__init__(operations, num_ops) | |||
| super().__init__(transforms, num_ops) | |||
| class RandomSelectSubpolicy(cde.RandomSelectSubpolicyOp): | |||
| @@ -33,7 +33,7 @@ from .validators import check_prob, check_crop, check_resize_interpolation, chec | |||
| check_normalize_py, check_random_crop, check_random_color_adjust, check_random_rotation, \ | |||
| check_transforms_list, check_random_apply, check_ten_crop, check_num_channels, check_pad, \ | |||
| check_random_perspective, check_random_erasing, check_cutout, check_linear_transform, check_random_affine, \ | |||
| check_mix_up, check_positive_degrees, check_uniform_augment_py, check_compose_list | |||
| check_mix_up, check_positive_degrees, check_uniform_augment_py, check_compose_list, check_auto_contrast | |||
| from .utils import Inter, Border | |||
| DE_PY_INTER_MODE = {Inter.NEAREST: Image.NEAREST, | |||
| @@ -1361,6 +1361,10 @@ class AutoContrast: | |||
| """ | |||
| Automatically maximize the contrast of the input PIL image. | |||
| Args: | |||
| cutoff (float, optional): Percent of pixels to cut off from the histogram (default=0.0). | |||
| ignore (int or sequence, optional): Pixel values to ignore (default=None). | |||
| Examples: | |||
| >>> py_transforms.ComposeOp([py_transforms.Decode(), | |||
| >>> py_transforms.AutoContrast(), | |||
| @@ -1368,6 +1372,11 @@ class AutoContrast: | |||
| """ | |||
| @check_auto_contrast | |||
| def __init__(self, cutoff=0.0, ignore=None): | |||
| self.cutoff = cutoff | |||
| self.ignore = ignore | |||
| def __call__(self, img): | |||
| """ | |||
| Call method. | |||
| @@ -1379,7 +1388,7 @@ class AutoContrast: | |||
| img (PIL Image), Augmented image. | |||
| """ | |||
| return util.auto_contrast(img) | |||
| return util.auto_contrast(img, self.cutoff, self.ignore) | |||
| class Invert: | |||
| @@ -1457,13 +1457,15 @@ def random_sharpness(img, degrees): | |||
| return ImageEnhance.Sharpness(img).enhance(v) | |||
| def auto_contrast(img): | |||
| def auto_contrast(img, cutoff, ignore): | |||
| """ | |||
| Automatically maximize the contrast of the input PIL image. | |||
| Args: | |||
| img (PIL Image): Image to be augmented with AutoContrast. | |||
| cutoff (float, optional): Percent of pixels to cut off from the histogram (default=0.0). | |||
| ignore (int or sequence, optional): Pixel values to ignore (default=None). | |||
| Returns: | |||
| img (PIL Image), Augmented image. | |||
| @@ -1473,7 +1475,7 @@ def auto_contrast(img): | |||
| if not is_pil(img): | |||
| raise TypeError('img should be PIL Image. Got {}'.format(type(img))) | |||
| return ImageOps.autocontrast(img) | |||
| return ImageOps.autocontrast(img, cutoff, ignore) | |||
| def invert_color(img): | |||
| @@ -506,13 +506,13 @@ def check_uniform_augment_cpp(method): | |||
| @wraps(method) | |||
| def new_method(self, *args, **kwargs): | |||
| [operations, num_ops], _ = parse_user_args(method, *args, **kwargs) | |||
| [transforms, num_ops], _ = parse_user_args(method, *args, **kwargs) | |||
| type_check(num_ops, (int,), "num_ops") | |||
| check_positive(num_ops, "num_ops") | |||
| if num_ops > len(operations): | |||
| raise ValueError("num_ops is greater than operations list size") | |||
| type_check_list(operations, (TensorOp,), "tensor_ops") | |||
| if num_ops > len(transforms): | |||
| raise ValueError("num_ops is greater than transforms list size") | |||
| type_check_list(transforms, (TensorOp,), "tensor_ops") | |||
| return method(self, *args, **kwargs) | |||
| @@ -58,7 +58,7 @@ def test_auto_contrast_py(plot=False): | |||
| transforms_auto_contrast = F.ComposeOp([F.Decode(), | |||
| F.Resize((224, 224)), | |||
| F.AutoContrast(), | |||
| F.AutoContrast(cutoff=10.0, ignore=[10, 20]), | |||
| F.ToTensor()]) | |||
| ds_auto_contrast = ds.map(input_columns="image", | |||
| @@ -99,8 +99,8 @@ def test_auto_contrast_c(plot=False): | |||
| ds = ds.map(input_columns=["image"], | |||
| operations=[C.Decode(), | |||
| C.Resize((224, 224))]) | |||
| python_op = F.AutoContrast() | |||
| c_op = C.AutoContrast() | |||
| python_op = F.AutoContrast(cutoff=10.0, ignore=[10, 20]) | |||
| c_op = C.AutoContrast(cutoff=10.0, ignore=[10, 20]) | |||
| transforms_op = F.ComposeOp([lambda img: F.ToPIL()(img.astype(np.uint8)), | |||
| python_op, | |||
| np.array])() | |||
| @@ -143,6 +143,10 @@ def test_auto_contrast_c(plot=False): | |||
| logger.info("MSE= {}".format(str(np.mean(mse)))) | |||
| np.testing.assert_equal(np.mean(mse), 0.0) | |||
| # Compare with expected md5 from images | |||
| filename = "autcontrast_01_result_c.npz" | |||
| save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN) | |||
| if plot: | |||
| visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2) | |||
| @@ -209,11 +213,11 @@ def test_auto_contrast_one_channel_c(plot=False): | |||
| visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2) | |||
| def test_auto_contrast_invalid_input_c(): | |||
| def test_auto_contrast_invalid_ignore_param_c(): | |||
| """ | |||
| Test AutoContrast C Op with invalid params | |||
| Test AutoContrast C Op with invalid ignore parameter | |||
| """ | |||
| logger.info("Test AutoContrast C Op with invalid params") | |||
| logger.info("Test AutoContrast C Op with invalid ignore parameter") | |||
| try: | |||
| ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) | |||
| ds = ds.map(input_columns=["image"], | |||
| @@ -226,10 +230,110 @@ def test_auto_contrast_invalid_input_c(): | |||
| except TypeError as error: | |||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||
| assert "Argument ignore with value 255.5 is not of type" in str(error) | |||
| try: | |||
| ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) | |||
| ds = ds.map(input_columns=["image"], | |||
| operations=[C.Decode(), | |||
| C.Resize((224, 224)), | |||
| lambda img: np.array(img[:, :, 0])]) | |||
| # invalid ignore | |||
| ds = ds.map(input_columns="image", | |||
| operations=C.AutoContrast(ignore=(10, 100))) | |||
| except TypeError as error: | |||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||
| assert "Argument ignore with value (10,100) is not of type" in str(error) | |||
| def test_auto_contrast_invalid_cutoff_param_c(): | |||
| """ | |||
| Test AutoContrast C Op with invalid cutoff parameter | |||
| """ | |||
| logger.info("Test AutoContrast C Op with invalid cutoff parameter") | |||
| try: | |||
| ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) | |||
| ds = ds.map(input_columns=["image"], | |||
| operations=[C.Decode(), | |||
| C.Resize((224, 224)), | |||
| lambda img: np.array(img[:, :, 0])]) | |||
| # invalid ignore | |||
| ds = ds.map(input_columns="image", | |||
| operations=C.AutoContrast(cutoff=-10.0)) | |||
| except ValueError as error: | |||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||
| assert "Input cutoff is not within the required interval of (0 to 100)." in str(error) | |||
| try: | |||
| ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) | |||
| ds = ds.map(input_columns=["image"], | |||
| operations=[C.Decode(), | |||
| C.Resize((224, 224)), | |||
| lambda img: np.array(img[:, :, 0])]) | |||
| # invalid ignore | |||
| ds = ds.map(input_columns="image", | |||
| operations=C.AutoContrast(cutoff=120.0)) | |||
| except ValueError as error: | |||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||
| assert "Input cutoff is not within the required interval of (0 to 100)." in str(error) | |||
| def test_auto_contrast_invalid_ignore_param_py(): | |||
| """ | |||
| Test AutoContrast python Op with invalid ignore parameter | |||
| """ | |||
| logger.info("Test AutoContrast python Op with invalid ignore parameter") | |||
| try: | |||
| ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) | |||
| ds = ds.map(input_columns=["image"], | |||
| operations=[F.ComposeOp([F.Decode(), | |||
| F.Resize((224, 224)), | |||
| F.AutoContrast(ignore=255.5), | |||
| F.ToTensor()])]) | |||
| except TypeError as error: | |||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||
| assert "Argument ignore with value 255.5 is not of type" in str(error) | |||
| try: | |||
| ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) | |||
| ds = ds.map(input_columns=["image"], | |||
| operations=[F.ComposeOp([F.Decode(), | |||
| F.Resize((224, 224)), | |||
| F.AutoContrast(ignore=(10, 100)), | |||
| F.ToTensor()])]) | |||
| except TypeError as error: | |||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||
| assert "Argument ignore with value (10,100) is not of type" in str(error) | |||
| def test_auto_contrast_invalid_cutoff_param_py(): | |||
| """ | |||
| Test AutoContrast python Op with invalid cutoff parameter | |||
| """ | |||
| logger.info("Test AutoContrast python Op with invalid cutoff parameter") | |||
| try: | |||
| ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) | |||
| ds = ds.map(input_columns=["image"], | |||
| operations=[F.ComposeOp([F.Decode(), | |||
| F.Resize((224, 224)), | |||
| F.AutoContrast(cutoff=-10.0), | |||
| F.ToTensor()])]) | |||
| except ValueError as error: | |||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||
| assert "Input cutoff is not within the required interval of (0 to 100)." in str(error) | |||
| try: | |||
| ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) | |||
| ds = ds.map(input_columns=["image"], | |||
| operations=[F.ComposeOp([F.Decode(), | |||
| F.Resize((224, 224)), | |||
| F.AutoContrast(cutoff=120.0), | |||
| F.ToTensor()])]) | |||
| except ValueError as error: | |||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||
| assert "Input cutoff is not within the required interval of (0 to 100)." in str(error) | |||
| if __name__ == "__main__": | |||
| test_auto_contrast_py(plot=True) | |||
| test_auto_contrast_c(plot=True) | |||
| test_auto_contrast_one_channel_c(plot=True) | |||
| test_auto_contrast_invalid_input_c() | |||
| test_auto_contrast_invalid_ignore_param_c() | |||
| test_auto_contrast_invalid_ignore_param_py() | |||
| test_auto_contrast_invalid_cutoff_param_c() | |||
| test_auto_contrast_invalid_cutoff_param_py() | |||
| @@ -124,7 +124,7 @@ def test_cpp_uniform_augment(plot=False, num_ops=2): | |||
| C.RandomColorAdjust(), | |||
| C.RandomRotation(degrees=45)] | |||
| uni_aug = C.UniformAugment(operations=transforms_ua, num_ops=num_ops) | |||
| uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) | |||
| transforms_all = [C.Decode(), C.Resize(size=[224, 224]), | |||
| uni_aug, | |||
| @@ -166,7 +166,7 @@ def test_cpp_uniform_augment_exception_pyops(num_ops=2): | |||
| F.Invert()] | |||
| with pytest.raises(TypeError) as e: | |||
| C.UniformAugment(operations=transforms_ua, num_ops=num_ops) | |||
| C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) | |||
| logger.info("Got an exception in DE: {}".format(str(e))) | |||
| assert "Argument tensor_ops[5] with value" \ | |||
| @@ -187,7 +187,7 @@ def test_cpp_uniform_augment_exception_large_numops(num_ops=6): | |||
| C.RandomRotation(degrees=45)] | |||
| try: | |||
| _ = C.UniformAugment(operations=transforms_ua, num_ops=num_ops) | |||
| _ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) | |||
| except Exception as e: | |||
| logger.info("Got an exception in DE: {}".format(str(e))) | |||
| @@ -207,7 +207,7 @@ def test_cpp_uniform_augment_exception_nonpositive_numops(num_ops=0): | |||
| C.RandomRotation(degrees=45)] | |||
| try: | |||
| _ = C.UniformAugment(operations=transforms_ua, num_ops=num_ops) | |||
| _ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) | |||
| except Exception as e: | |||
| logger.info("Got an exception in DE: {}".format(str(e))) | |||
| @@ -227,7 +227,7 @@ def test_cpp_uniform_augment_exception_float_numops(num_ops=2.5): | |||
| C.RandomRotation(degrees=45)] | |||
| try: | |||
| _ = C.UniformAugment(operations=transforms_ua, num_ops=num_ops) | |||
| _ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) | |||
| except Exception as e: | |||
| logger.info("Got an exception in DE: {}".format(str(e))) | |||
| @@ -248,7 +248,7 @@ def test_cpp_uniform_augment_random_crop_badinput(num_ops=1): | |||
| C.RandomCrop(size=[224, 224]), | |||
| C.RandomHorizontalFlip() | |||
| ] | |||
| uni_aug = C.UniformAugment(operations=transforms_ua, num_ops=num_ops) | |||
| uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops) | |||
| ds1 = ds1.map(input_columns="image", operations=uni_aug) | |||
| # apply DatasetOps | |||