Browse Source

!3180 Update for python AutoContrast API, cpp UnifromAugment API and UT

Merge pull request !3180 from alashkari/update-aug-ops-2
tags/v0.6.0-beta
mindspore-ci-bot Gitee 5 years ago
parent
commit
c84d4bbd36
11 changed files with 151 additions and 36 deletions
  1. +1
    -1
      mindspore/ccsrc/minddata/dataset/api/python_bindings.cc
  2. +5
    -5
      mindspore/ccsrc/minddata/dataset/api/transforms.cc
  3. +4
    -4
      mindspore/ccsrc/minddata/dataset/include/transforms.h
  4. +5
    -5
      mindspore/dataset/transforms/vision/c_transforms.py
  5. +11
    -2
      mindspore/dataset/transforms/vision/py_transforms.py
  6. +4
    -2
      mindspore/dataset/transforms/vision/py_transforms_util.py
  7. +4
    -4
      mindspore/dataset/transforms/vision/validators.py
  8. BIN
      tests/ut/data/dataset/golden/autcontrast_01_result_c.npz
  9. BIN
      tests/ut/data/dataset/golden/autcontrast_01_result_py.npz
  10. +111
    -7
      tests/ut/python/dataset/test_autocontrast.py
  11. +6
    -6
      tests/ut/python/dataset/test_uniform_augment.py

+ 1
- 1
mindspore/ccsrc/minddata/dataset/api/python_bindings.cc View File

@@ -425,7 +425,7 @@ void bindTensorOps1(py::module *m) {


(void)py::class_<UniformAugOp, TensorOp, std::shared_ptr<UniformAugOp>>( (void)py::class_<UniformAugOp, TensorOp, std::shared_ptr<UniformAugOp>>(
*m, "UniformAugOp", "Tensor operation to apply random augmentation(s).") *m, "UniformAugOp", "Tensor operation to apply random augmentation(s).")
.def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("operations"),
.def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("transforms"),
py::arg("NumOps") = UniformAugOp::kDefNumOps); py::arg("NumOps") = UniformAugOp::kDefNumOps);


(void)py::class_<BoundingBoxAugmentOp, TensorOp, std::shared_ptr<BoundingBoxAugmentOp>>( (void)py::class_<BoundingBoxAugmentOp, TensorOp, std::shared_ptr<BoundingBoxAugmentOp>>(


+ 5
- 5
mindspore/ccsrc/minddata/dataset/api/transforms.cc View File

@@ -90,9 +90,9 @@ std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size) {
} }


// Function to create UniformAugOperation. // Function to create UniformAugOperation.
std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> operations,
std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> transforms,
int32_t num_ops) { int32_t num_ops) {
auto op = std::make_shared<UniformAugOperation>(operations, num_ops);
auto op = std::make_shared<UniformAugOperation>(transforms, num_ops);
// Input validation // Input validation
if (!op->ValidateParams()) { if (!op->ValidateParams()) {
return nullptr; return nullptr;
@@ -290,14 +290,14 @@ std::shared_ptr<TensorOp> CenterCropOperation::Build() {
} }


// UniformAugOperation // UniformAugOperation
UniformAugOperation::UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> operations, int32_t num_ops)
: operations_(operations), num_ops_(num_ops) {}
UniformAugOperation::UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops)
: transforms_(transforms), num_ops_(num_ops) {}


bool UniformAugOperation::ValidateParams() { return true; } bool UniformAugOperation::ValidateParams() { return true; }


std::shared_ptr<TensorOp> UniformAugOperation::Build() { std::shared_ptr<TensorOp> UniformAugOperation::Build() {
std::vector<std::shared_ptr<TensorOp>> tensor_ops; std::vector<std::shared_ptr<TensorOp>> tensor_ops;
(void)std::transform(operations_.begin(), operations_.end(), std::back_inserter(tensor_ops),
(void)std::transform(transforms_.begin(), transforms_.end(), std::back_inserter(tensor_ops),
[](std::shared_ptr<TensorOperation> op) -> std::shared_ptr<TensorOp> { return op->Build(); }); [](std::shared_ptr<TensorOperation> op) -> std::shared_ptr<TensorOp> { return op->Build(); });
std::shared_ptr<UniformAugOp> tensor_op = std::make_shared<UniformAugOp>(tensor_ops, num_ops_); std::shared_ptr<UniformAugOp> tensor_op = std::make_shared<UniformAugOp>(tensor_ops, num_ops_);
return tensor_op; return tensor_op;


+ 4
- 4
mindspore/ccsrc/minddata/dataset/include/transforms.h View File

@@ -108,10 +108,10 @@ std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size);


/// \brief Function to create a UniformAugment TensorOperation. /// \brief Function to create a UniformAugment TensorOperation.
/// \notes Tensor operation to perform randomly selected augmentation. /// \notes Tensor operation to perform randomly selected augmentation.
/// \param[in] operations - a vector of TensorOperation operations.
/// \param[in] transforms - a vector of TensorOperation transforms.
/// \param[in] num_ops - integer representing the number of OPs to be selected and applied. /// \param[in] num_ops - integer representing the number of OPs to be selected and applied.
/// \return Shared pointer to the current TensorOperation. /// \return Shared pointer to the current TensorOperation.
std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> operations,
std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> transforms,
int32_t num_ops = 2); int32_t num_ops = 2);


/// \brief Function to create a RandomHorizontalFlip TensorOperation. /// \brief Function to create a RandomHorizontalFlip TensorOperation.
@@ -264,7 +264,7 @@ class CenterCropOperation : public TensorOperation {


class UniformAugOperation : public TensorOperation { class UniformAugOperation : public TensorOperation {
public: public:
explicit UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> operations, int32_t num_ops = 2);
explicit UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops = 2);


~UniformAugOperation() = default; ~UniformAugOperation() = default;


@@ -273,7 +273,7 @@ class UniformAugOperation : public TensorOperation {
bool ValidateParams() override; bool ValidateParams() override;


private: private:
std::vector<std::shared_ptr<TensorOperation>> operations_;
std::vector<std::shared_ptr<TensorOperation>> transforms_;
int32_t num_ops_; int32_t num_ops_;
}; };




+ 5
- 5
mindspore/dataset/transforms/vision/c_transforms.py View File

@@ -722,7 +722,7 @@ class UniformAugment(cde.UniformAugOp):
Tensor operation to perform randomly selected augmentation. Tensor operation to perform randomly selected augmentation.


Args: Args:
operations: list of C++ operations (python OPs are not accepted).
transforms: list of C++ operations (python OPs are not accepted).
num_ops (int, optional): number of OPs to be selected and applied (default=2). num_ops (int, optional): number of OPs to be selected and applied (default=2).


Examples: Examples:
@@ -730,7 +730,7 @@ class UniformAugment(cde.UniformAugOp):
>>> c_transforms.RandomVerticalFlip(), >>> c_transforms.RandomVerticalFlip(),
>>> c_transforms.RandomColorAdjust(), >>> c_transforms.RandomColorAdjust(),
>>> c_transforms.RandomRotation(degrees=45)] >>> c_transforms.RandomRotation(degrees=45)]
>>> uni_aug = c_transforms.UniformAugment(operations=transforms_list, num_ops=2)
>>> uni_aug = c_transforms.UniformAugment(transforms=transforms_list, num_ops=2)
>>> transforms_all = [c_transforms.Decode(), c_transforms.Resize(size=[224, 224]), >>> transforms_all = [c_transforms.Decode(), c_transforms.Resize(size=[224, 224]),
>>> uni_aug, F.ToTensor()] >>> uni_aug, F.ToTensor()]
>>> ds_ua = ds.map(input_columns="image", >>> ds_ua = ds.map(input_columns="image",
@@ -738,10 +738,10 @@ class UniformAugment(cde.UniformAugOp):
""" """


@check_uniform_augment_cpp @check_uniform_augment_cpp
def __init__(self, operations, num_ops=2):
self.operations = operations
def __init__(self, transforms, num_ops=2):
self.transforms = transforms
self.num_ops = num_ops self.num_ops = num_ops
super().__init__(operations, num_ops)
super().__init__(transforms, num_ops)




class RandomSelectSubpolicy(cde.RandomSelectSubpolicyOp): class RandomSelectSubpolicy(cde.RandomSelectSubpolicyOp):


+ 11
- 2
mindspore/dataset/transforms/vision/py_transforms.py View File

@@ -33,7 +33,7 @@ from .validators import check_prob, check_crop, check_resize_interpolation, chec
check_normalize_py, check_random_crop, check_random_color_adjust, check_random_rotation, \ check_normalize_py, check_random_crop, check_random_color_adjust, check_random_rotation, \
check_transforms_list, check_random_apply, check_ten_crop, check_num_channels, check_pad, \ check_transforms_list, check_random_apply, check_ten_crop, check_num_channels, check_pad, \
check_random_perspective, check_random_erasing, check_cutout, check_linear_transform, check_random_affine, \ check_random_perspective, check_random_erasing, check_cutout, check_linear_transform, check_random_affine, \
check_mix_up, check_positive_degrees, check_uniform_augment_py, check_compose_list
check_mix_up, check_positive_degrees, check_uniform_augment_py, check_compose_list, check_auto_contrast
from .utils import Inter, Border from .utils import Inter, Border


DE_PY_INTER_MODE = {Inter.NEAREST: Image.NEAREST, DE_PY_INTER_MODE = {Inter.NEAREST: Image.NEAREST,
@@ -1361,6 +1361,10 @@ class AutoContrast:
""" """
Automatically maximize the contrast of the input PIL image. Automatically maximize the contrast of the input PIL image.


Args:
cutoff (float, optional): Percent of pixels to cut off from the histogram (default=0.0).
ignore (int or sequence, optional): Pixel values to ignore (default=None).

Examples: Examples:
>>> py_transforms.ComposeOp([py_transforms.Decode(), >>> py_transforms.ComposeOp([py_transforms.Decode(),
>>> py_transforms.AutoContrast(), >>> py_transforms.AutoContrast(),
@@ -1368,6 +1372,11 @@ class AutoContrast:


""" """


@check_auto_contrast
def __init__(self, cutoff=0.0, ignore=None):
self.cutoff = cutoff
self.ignore = ignore

def __call__(self, img): def __call__(self, img):
""" """
Call method. Call method.
@@ -1379,7 +1388,7 @@ class AutoContrast:
img (PIL Image), Augmented image. img (PIL Image), Augmented image.
""" """


return util.auto_contrast(img)
return util.auto_contrast(img, self.cutoff, self.ignore)




class Invert: class Invert:


+ 4
- 2
mindspore/dataset/transforms/vision/py_transforms_util.py View File

@@ -1457,13 +1457,15 @@ def random_sharpness(img, degrees):
return ImageEnhance.Sharpness(img).enhance(v) return ImageEnhance.Sharpness(img).enhance(v)




def auto_contrast(img):
def auto_contrast(img, cutoff, ignore):


""" """
Automatically maximize the contrast of the input PIL image. Automatically maximize the contrast of the input PIL image.


Args: Args:
img (PIL Image): Image to be augmented with AutoContrast. img (PIL Image): Image to be augmented with AutoContrast.
cutoff (float, optional): Percent of pixels to cut off from the histogram (default=0.0).
ignore (int or sequence, optional): Pixel values to ignore (default=None).


Returns: Returns:
img (PIL Image), Augmented image. img (PIL Image), Augmented image.
@@ -1473,7 +1475,7 @@ def auto_contrast(img):
if not is_pil(img): if not is_pil(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img))) raise TypeError('img should be PIL Image. Got {}'.format(type(img)))


return ImageOps.autocontrast(img)
return ImageOps.autocontrast(img, cutoff, ignore)




def invert_color(img): def invert_color(img):


+ 4
- 4
mindspore/dataset/transforms/vision/validators.py View File

@@ -506,13 +506,13 @@ def check_uniform_augment_cpp(method):


@wraps(method) @wraps(method)
def new_method(self, *args, **kwargs): def new_method(self, *args, **kwargs):
[operations, num_ops], _ = parse_user_args(method, *args, **kwargs)
[transforms, num_ops], _ = parse_user_args(method, *args, **kwargs)
type_check(num_ops, (int,), "num_ops") type_check(num_ops, (int,), "num_ops")
check_positive(num_ops, "num_ops") check_positive(num_ops, "num_ops")


if num_ops > len(operations):
raise ValueError("num_ops is greater than operations list size")
type_check_list(operations, (TensorOp,), "tensor_ops")
if num_ops > len(transforms):
raise ValueError("num_ops is greater than transforms list size")
type_check_list(transforms, (TensorOp,), "tensor_ops")


return method(self, *args, **kwargs) return method(self, *args, **kwargs)




BIN
tests/ut/data/dataset/golden/autcontrast_01_result_c.npz View File


BIN
tests/ut/data/dataset/golden/autcontrast_01_result_py.npz View File


+ 111
- 7
tests/ut/python/dataset/test_autocontrast.py View File

@@ -58,7 +58,7 @@ def test_auto_contrast_py(plot=False):


transforms_auto_contrast = F.ComposeOp([F.Decode(), transforms_auto_contrast = F.ComposeOp([F.Decode(),
F.Resize((224, 224)), F.Resize((224, 224)),
F.AutoContrast(),
F.AutoContrast(cutoff=10.0, ignore=[10, 20]),
F.ToTensor()]) F.ToTensor()])


ds_auto_contrast = ds.map(input_columns="image", ds_auto_contrast = ds.map(input_columns="image",
@@ -99,8 +99,8 @@ def test_auto_contrast_c(plot=False):
ds = ds.map(input_columns=["image"], ds = ds.map(input_columns=["image"],
operations=[C.Decode(), operations=[C.Decode(),
C.Resize((224, 224))]) C.Resize((224, 224))])
python_op = F.AutoContrast()
c_op = C.AutoContrast()
python_op = F.AutoContrast(cutoff=10.0, ignore=[10, 20])
c_op = C.AutoContrast(cutoff=10.0, ignore=[10, 20])
transforms_op = F.ComposeOp([lambda img: F.ToPIL()(img.astype(np.uint8)), transforms_op = F.ComposeOp([lambda img: F.ToPIL()(img.astype(np.uint8)),
python_op, python_op,
np.array])() np.array])()
@@ -143,6 +143,10 @@ def test_auto_contrast_c(plot=False):
logger.info("MSE= {}".format(str(np.mean(mse)))) logger.info("MSE= {}".format(str(np.mean(mse))))
np.testing.assert_equal(np.mean(mse), 0.0) np.testing.assert_equal(np.mean(mse), 0.0)


# Compare with expected md5 from images
filename = "autcontrast_01_result_c.npz"
save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN)

if plot: if plot:
visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2) visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)


@@ -209,11 +213,11 @@ def test_auto_contrast_one_channel_c(plot=False):
visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2) visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)




def test_auto_contrast_invalid_input_c():
def test_auto_contrast_invalid_ignore_param_c():
""" """
Test AutoContrast C Op with invalid params
Test AutoContrast C Op with invalid ignore parameter
""" """
logger.info("Test AutoContrast C Op with invalid params")
logger.info("Test AutoContrast C Op with invalid ignore parameter")
try: try:
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False) ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"], ds = ds.map(input_columns=["image"],
@@ -226,10 +230,110 @@ def test_auto_contrast_invalid_input_c():
except TypeError as error: except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error))) logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value 255.5 is not of type" in str(error) assert "Argument ignore with value 255.5 is not of type" in str(error)
try:
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"],
operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])])
# invalid ignore
ds = ds.map(input_columns="image",
operations=C.AutoContrast(ignore=(10, 100)))
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value (10,100) is not of type" in str(error)


def test_auto_contrast_invalid_cutoff_param_c():
"""
Test AutoContrast C Op with invalid cutoff parameter
"""
logger.info("Test AutoContrast C Op with invalid cutoff parameter")
try:
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"],
operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])])
# invalid ignore
ds = ds.map(input_columns="image",
operations=C.AutoContrast(cutoff=-10.0))
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
try:
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"],
operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])])
# invalid ignore
ds = ds.map(input_columns="image",
operations=C.AutoContrast(cutoff=120.0))
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)


def test_auto_contrast_invalid_ignore_param_py():
"""
Test AutoContrast python Op with invalid ignore parameter
"""
logger.info("Test AutoContrast python Op with invalid ignore parameter")
try:
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"],
operations=[F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(ignore=255.5),
F.ToTensor()])])
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value 255.5 is not of type" in str(error)
try:
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"],
operations=[F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(ignore=(10, 100)),
F.ToTensor()])])
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value (10,100) is not of type" in str(error)


def test_auto_contrast_invalid_cutoff_param_py():
"""
Test AutoContrast python Op with invalid cutoff parameter
"""
logger.info("Test AutoContrast python Op with invalid cutoff parameter")
try:
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"],
operations=[F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(cutoff=-10.0),
F.ToTensor()])])
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
try:
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"],
operations=[F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(cutoff=120.0),
F.ToTensor()])])
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)




if __name__ == "__main__": if __name__ == "__main__":
test_auto_contrast_py(plot=True) test_auto_contrast_py(plot=True)
test_auto_contrast_c(plot=True) test_auto_contrast_c(plot=True)
test_auto_contrast_one_channel_c(plot=True) test_auto_contrast_one_channel_c(plot=True)
test_auto_contrast_invalid_input_c()
test_auto_contrast_invalid_ignore_param_c()
test_auto_contrast_invalid_ignore_param_py()
test_auto_contrast_invalid_cutoff_param_c()
test_auto_contrast_invalid_cutoff_param_py()

+ 6
- 6
tests/ut/python/dataset/test_uniform_augment.py View File

@@ -124,7 +124,7 @@ def test_cpp_uniform_augment(plot=False, num_ops=2):
C.RandomColorAdjust(), C.RandomColorAdjust(),
C.RandomRotation(degrees=45)] C.RandomRotation(degrees=45)]


uni_aug = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)


transforms_all = [C.Decode(), C.Resize(size=[224, 224]), transforms_all = [C.Decode(), C.Resize(size=[224, 224]),
uni_aug, uni_aug,
@@ -166,7 +166,7 @@ def test_cpp_uniform_augment_exception_pyops(num_ops=2):
F.Invert()] F.Invert()]


with pytest.raises(TypeError) as e: with pytest.raises(TypeError) as e:
C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)


logger.info("Got an exception in DE: {}".format(str(e))) logger.info("Got an exception in DE: {}".format(str(e)))
assert "Argument tensor_ops[5] with value" \ assert "Argument tensor_ops[5] with value" \
@@ -187,7 +187,7 @@ def test_cpp_uniform_augment_exception_large_numops(num_ops=6):
C.RandomRotation(degrees=45)] C.RandomRotation(degrees=45)]


try: try:
_ = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
_ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)


except Exception as e: except Exception as e:
logger.info("Got an exception in DE: {}".format(str(e))) logger.info("Got an exception in DE: {}".format(str(e)))
@@ -207,7 +207,7 @@ def test_cpp_uniform_augment_exception_nonpositive_numops(num_ops=0):
C.RandomRotation(degrees=45)] C.RandomRotation(degrees=45)]


try: try:
_ = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
_ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)


except Exception as e: except Exception as e:
logger.info("Got an exception in DE: {}".format(str(e))) logger.info("Got an exception in DE: {}".format(str(e)))
@@ -227,7 +227,7 @@ def test_cpp_uniform_augment_exception_float_numops(num_ops=2.5):
C.RandomRotation(degrees=45)] C.RandomRotation(degrees=45)]


try: try:
_ = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
_ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)


except Exception as e: except Exception as e:
logger.info("Got an exception in DE: {}".format(str(e))) logger.info("Got an exception in DE: {}".format(str(e)))
@@ -248,7 +248,7 @@ def test_cpp_uniform_augment_random_crop_badinput(num_ops=1):
C.RandomCrop(size=[224, 224]), C.RandomCrop(size=[224, 224]),
C.RandomHorizontalFlip() C.RandomHorizontalFlip()
] ]
uni_aug = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
ds1 = ds1.map(input_columns="image", operations=uni_aug) ds1 = ds1.map(input_columns="image", operations=uni_aug)


# apply DatasetOps # apply DatasetOps


Loading…
Cancel
Save