Browse Source

!10648 modify tinydarknet

From: @wukesong
Reviewed-by: @linqingke,@wuxuejian
Signed-off-by: @linqingke
tags/v1.2.0-rc1
mindspore-ci-bot Gitee 5 years ago
parent
commit
c34b75e96e
4 changed files with 22 additions and 22 deletions
  1. +11
    -11
      model_zoo/official/cv/tinydarknet/README.md
  2. +10
    -10
      model_zoo/official/cv/tinydarknet/README_CN.md
  3. +1
    -1
      model_zoo/official/cv/tinydarknet/scripts/run_distribute_train.sh
  4. +0
    -0
      model_zoo/official/cv/tinydarknet/scripts/run_standalone_train.sh

+ 11
- 11
model_zoo/official/cv/tinydarknet/README.md View File

@@ -71,10 +71,10 @@ After installing MindSpore via the official website, you can start training and

```python
# run training example
bash ./scripts/run_train_single.sh
bash ./scripts/run_standalone_train.sh

# run distributed training example
bash ./scripts/run_train.sh rank_table.json
bash ./scripts/run_distribute_train.sh rank_table.json

# run evaluation example
python eval.py > eval.log 2>&1 &
@@ -97,10 +97,11 @@ For more details, please refer the specify script.
```bash

├── Tiny-DarkNet
├── README.md // descriptions about Tiny-Darknet
├── README.md // descriptions about Tiny-Darknet in English
├── README_CN.md // descriptions about Tiny-Darknet in Chinese
├── scripts
│ ├──run_train_single.sh // shell script for single on Ascend
│ ├──run_train.sh // shell script for distributed on Ascend
│ ├──run_standalone_train.sh // shell script for single on Ascend
│ ├──run_distribute_train.sh // shell script for distributed on Ascend
│ ├──run_eval.sh // shell script for evaluation on Ascend
├── src
│ ├──dataset.py // creating dataset
@@ -131,7 +132,6 @@ Parameters for both training and evaluation can be set in config.py
'data_path': './ImageNet_Original/train/' # absolute full path to the train datasets
'val_data_path': './ImageNet_Original/val/' # absolute full path to the evaluation datasets
'device_target': 'Ascend' # device running the program
'device_id': 0 # device ID used to train or evaluate the dataset. Ignore it when you use run_train.sh for distributed training
'keep_checkpoint_max': 10 # only keep the last keep_checkpoint_max checkpoint
'checkpoint_path': '/train_tinydarknet.ckpt' # the absolute full path to save the checkpoint file
'onnx_filename': 'tinydarknet.onnx' # file name of the onnx model used in export.py
@@ -157,7 +157,7 @@ For more configuration details, please refer the script config.py.
- running on Ascend:

```python
sh scripts/run_train_single.sh
bash scripts/run_standalone_train.sh
```

The command above will run in the background, you can view the results through the file train.log.
@@ -184,7 +184,7 @@ For more configuration details, please refer the script config.py.
- running on Ascend:

```python
sh scripts/run_train.sh
bash ./scripts/run_distribute_train.sh rank_table.json
```

The above shell script will run distribute training in the background. You can view the results through the file train_parallel[X]/log. The loss value will be achieved as follows:
@@ -211,7 +211,7 @@ For more configuration details, please refer the script config.py.
```python
python eval.py > eval.log 2>&1 &
OR
sh scripts/run_eval.sh
bash scripts/run_eval.sh
```

The above python command will run in the background. You can view the results through the file "eval.log". The accuracy of the test dataset will be as follows:
@@ -232,7 +232,7 @@ For more configuration details, please refer the script config.py.

## [Performance](#contents)

### [Evaluation Performance](#contents)
### [Training Performance](#contents)

| Parameters | Ascend |
| -------------------------- | ----------------------------------------------------------- |
@@ -260,7 +260,7 @@ For more configuration details, please refer the script config.py.
| Dataset | 200k images |
| batch_size | 128 |
| Outputs | probability |
| Accuracy | 8 pc Top-5: 81.7% |
| Accuracy | 8 pc Top-1: 58.7%; Top-5: 81.7% |
| Model for inference | 11.6M (.ckpt file) |

# [ModelZoo Homepage](#contents)


+ 10
- 10
model_zoo/official/cv/tinydarknet/README_CN.md View File

@@ -79,10 +79,10 @@ Tiny-DarkNet是Joseph Chet Redmon等人提出的一个16层的针对于经典的

```python
# 单卡训练
bash ./scripts/run_train_single.sh
bash ./scripts/run_standalone_train.sh

# 分布式训练
bash ./scripts/run_train.sh rank_table.json
bash ./scripts/run_distribute_train.sh rank_table.json

# 评估
python eval.py > eval.log 2>&1 &
@@ -105,10 +105,11 @@ Tiny-DarkNet是Joseph Chet Redmon等人提出的一个16层的针对于经典的
```bash

├── Tiny-DarkNet
├── README.md // Tiny-Darknet相关说明
├── README.md // Tiny-Darknet英文说明
├── README_CN.md // Tiny-Darknet中文说明
├── scripts
│ ├──run_train_single.sh // Ascend单卡训练shell脚本
│ ├──run_train.sh // Ascend分布式训练shell脚本
│ ├──run_standalone_train.sh // Ascend单卡训练shell脚本
│ ├──run_distribute_train.sh // Ascend分布式训练shell脚本
│ ├──run_eval.sh // Ascend评估shell脚本
├── src
│ ├──dataset.py // 创建数据集
@@ -139,7 +140,6 @@ Tiny-DarkNet是Joseph Chet Redmon等人提出的一个16层的针对于经典的
'data_path': './ImageNet_Original/train/' # 训练数据集的绝对路径
'val_data_path': './ImageNet_Original/val/' # 评估数据集的绝对路径
'device_target': 'Ascend' # 程序运行的设备
'device_id': 0 # 用来训练和评估的设备编号
'keep_checkpoint_max': 10 # 仅仅保持最新的keep_checkpoint_max个checkpoint文件
'checkpoint_path': '/train_tinydarknet.ckpt' # 保存checkpoint文件的绝对路径
'onnx_filename': 'tinydarknet.onnx' # 用于export.py 文件中的onnx模型的文件名
@@ -165,7 +165,7 @@ Tiny-DarkNet是Joseph Chet Redmon等人提出的一个16层的针对于经典的
- 在Ascend资源上运行:

```python
sh scripts/run_train_single.sh
bash ./scripts/run_standalone_train.sh
```

上述的命令将运行在后台中,可以通过 `train.log` 文件查看运行结果.
@@ -192,7 +192,7 @@ Tiny-DarkNet是Joseph Chet Redmon等人提出的一个16层的针对于经典的
- 在Ascend资源上运行:

```python
sh scripts/run_train.sh
bash scripts/run_distribute_train.sh rank_table.json
```

上述的脚本命令将在后台中进行分布式训练,可以通过`train_parallel[X]/log`文件查看运行结果. 训练的损失值将以如下的形式展示:
@@ -219,7 +219,7 @@ Tiny-DarkNet是Joseph Chet Redmon等人提出的一个16层的针对于经典的
```python
python eval.py > eval.log 2>&1 &
OR
sh scripts/run_eval.sh
bash scripts/run_eval.sh
```

上述的python命令将运行在后台中,可以通过"eval.log"文件查看结果. 测试数据集的准确率将如下面所列:
@@ -268,7 +268,7 @@ Tiny-DarkNet是Joseph Chet Redmon等人提出的一个16层的针对于经典的
| 数据集 | 200k张图片 |
| batch_size | 128 |
| 输出 | 分类概率 |
| 准确率 | 8卡 Top-5: 81.7% |
| 准确率 | 8卡 Top-1: 58.7%; Top-5: 81.7% |
| 推理模型 | 11.6M (.ckpt文件) |

# [ModelZoo主页](#目录)


model_zoo/official/cv/tinydarknet/scripts/run_train.sh → model_zoo/official/cv/tinydarknet/scripts/run_distribute_train.sh View File

@@ -18,7 +18,7 @@ echo "$1 $2"

if [ $# != 1 ] && [ $# != 2 ]
then
echo "Usage: sh run_train.sh [RANK_TABLE_FILE] [cifar10|imagenet]"
echo "Usage: bash run_distribute_train.sh [RANK_TABLE_FILE] [cifar10|imagenet]"
exit 1
fi


model_zoo/official/cv/tinydarknet/scripts/run_train_single.sh → model_zoo/official/cv/tinydarknet/scripts/run_standalone_train.sh View File


Loading…
Cancel
Save