@@ -71,10 +71,10 @@ After installing MindSpore via the official website, you can start training and
```python
```python
# run training example
# run training example
bash ./scripts/run_train_single .sh
bash ./scripts/run_standalone_train .sh
# run distributed training example
# run distributed training example
bash ./scripts/run_train.sh rank_table.json
bash ./scripts/run_distribute_ train.sh rank_table.json
# run evaluation example
# run evaluation example
python eval.py > eval.log 2>&1 &
python eval.py > eval.log 2>&1 &
@@ -97,10 +97,11 @@ For more details, please refer the specify script.
```bash
```bash
├── Tiny-DarkNet
├── Tiny-DarkNet
├── README.md // descriptions about Tiny-Darknet
├── README.md // descriptions about Tiny-Darknet in English
├── README_CN.md // descriptions about Tiny-Darknet in Chinese
├── scripts
├── scripts
│ ├──run_train_single .sh // shell script for single on Ascend
│ ├──run_train.sh // shell script for distributed on Ascend
│ ├──run_standalone_train .sh // shell script for single on Ascend
│ ├──run_distribute_ train.sh // shell script for distributed on Ascend
│ ├──run_eval.sh // shell script for evaluation on Ascend
│ ├──run_eval.sh // shell script for evaluation on Ascend
├── src
├── src
│ ├──dataset.py // creating dataset
│ ├──dataset.py // creating dataset
@@ -131,7 +132,6 @@ Parameters for both training and evaluation can be set in config.py
'data_path': './ImageNet_Original/train/' # absolute full path to the train datasets
'data_path': './ImageNet_Original/train/' # absolute full path to the train datasets
'val_data_path': './ImageNet_Original/val/' # absolute full path to the evaluation datasets
'val_data_path': './ImageNet_Original/val/' # absolute full path to the evaluation datasets
'device_target': 'Ascend' # device running the program
'device_target': 'Ascend' # device running the program
'device_id': 0 # device ID used to train or evaluate the dataset. Ignore it when you use run_train.sh for distributed training
'keep_checkpoint_max': 10 # only keep the last keep_checkpoint_max checkpoint
'keep_checkpoint_max': 10 # only keep the last keep_checkpoint_max checkpoint
'checkpoint_path': '/train_tinydarknet.ckpt' # the absolute full path to save the checkpoint file
'checkpoint_path': '/train_tinydarknet.ckpt' # the absolute full path to save the checkpoint file
'onnx_filename': 'tinydarknet.onnx' # file name of the onnx model used in export.py
'onnx_filename': 'tinydarknet.onnx' # file name of the onnx model used in export.py
@@ -157,7 +157,7 @@ For more configuration details, please refer the script config.py.
- running on Ascend:
- running on Ascend:
```python
```python
sh scripts/run_train_single .sh
bash scripts/run_standalone_train .sh
```
```
The command above will run in the background, you can view the results through the file train.log.
The command above will run in the background, you can view the results through the file train.log.
@@ -184,7 +184,7 @@ For more configuration details, please refer the script config.py.
- running on Ascend:
- running on Ascend:
```python
```python
sh scripts/run_train.sh
ba sh ./ scripts/run_distribute_ train.sh rank_table.json
```
```
The above shell script will run distribute training in the background. You can view the results through the file train_parallel[X]/log. The loss value will be achieved as follows:
The above shell script will run distribute training in the background. You can view the results through the file train_parallel[X]/log. The loss value will be achieved as follows:
@@ -211,7 +211,7 @@ For more configuration details, please refer the script config.py.
```python
```python
python eval.py > eval.log 2>&1 &
python eval.py > eval.log 2>&1 &
OR
OR
sh scripts/run_eval.sh
ba sh scripts/run_eval.sh
```
```
The above python command will run in the background. You can view the results through the file "eval.log". The accuracy of the test dataset will be as follows:
The above python command will run in the background. You can view the results through the file "eval.log". The accuracy of the test dataset will be as follows:
@@ -232,7 +232,7 @@ For more configuration details, please refer the script config.py.
## [Performance](#contents)
## [Performance](#contents)
### [Evaluation Performance](#contents)
### [Training Performance](#contents)
| Parameters | Ascend |
| Parameters | Ascend |
| -------------------------- | ----------------------------------------------------------- |
| -------------------------- | ----------------------------------------------------------- |
@@ -260,7 +260,7 @@ For more configuration details, please refer the script config.py.
| Dataset | 200k images |
| Dataset | 200k images |
| batch_size | 128 |
| batch_size | 128 |
| Outputs | probability |
| Outputs | probability |
| Accuracy | 8 pc Top-5: 81.7% |
| Accuracy | 8 pc Top-1: 58.7%; Top- 5: 81.7% |
| Model for inference | 11.6M (.ckpt file) |
| Model for inference | 11.6M (.ckpt file) |
# [ModelZoo Homepage](#contents)
# [ModelZoo Homepage](#contents)