| @@ -20,7 +20,7 @@ from mindspore import context | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.primitive import constexpr | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.common.initializer import initializer, Initializer | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore._checkparam import ParamValidator as validator, Rel | |||
| from mindspore._checkparam import Validator | |||
| @@ -251,6 +251,10 @@ class Conv2d(_Conv): | |||
| stride=self.stride, | |||
| dilation=self.dilation) | |||
| weight_shape = [1, self.in_channels, *self.kernel_size] | |||
| if isinstance(self.weight_init, Tensor): | |||
| self.weight_init = Tensor(self.weight_init.asnumpy().swapaxes(0, 1), self.weight_init.dtype) | |||
| if isinstance(self.weight_init, Initializer): | |||
| self.weight_init.shape = weight_shape | |||
| self.weight = Parameter(initializer(self.weight_init, weight_shape), name='weight') | |||
| def construct(self, x): | |||
| @@ -0,0 +1,59 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.common.initializer import Normal | |||
| from mindspore import Tensor | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_conv2d_depthwiseconv2d_str(): | |||
| net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal') | |||
| input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) | |||
| output = net(input_data) | |||
| assert output.shape == (3, 128, 32, 28) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_conv2d_depthwiseconv2d_initializer(): | |||
| net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal()) | |||
| input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) | |||
| output = net(input_data) | |||
| assert output.shape == (3, 128, 32, 28) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_conv2d_depthwiseconv2d_tensor(): | |||
| weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32)) | |||
| net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init) | |||
| input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) | |||
| output = net(input_data) | |||
| assert output.shape == (3, 128, 32, 28) | |||
| @@ -0,0 +1,56 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.nn as nn | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.common.initializer import Normal | |||
| from mindspore import Tensor | |||
| from mindspore import context | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| @pytest.mark.level1 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_conv2d_depthwiseconv2d_str(): | |||
| net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal') | |||
| input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) | |||
| output = net(input_data) | |||
| assert output.shape == (3, 128, 32, 28) | |||
| @pytest.mark.level1 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_conv2d_depthwiseconv2d_initializer(): | |||
| net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal()) | |||
| input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) | |||
| output = net(input_data) | |||
| assert output.shape == (3, 128, 32, 28) | |||
| @pytest.mark.level1 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_conv2d_depthwiseconv2d_tensor(): | |||
| weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32)) | |||
| net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init) | |||
| input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) | |||
| output = net(input_data) | |||
| assert output.shape == (3, 128, 32, 28) | |||