Browse Source

!6367 fix shape bug

Merge pull request !6367 from caozhou/fix_shape_bug
tags/v1.0.0
mindspore-ci-bot Gitee 5 years ago
parent
commit
b79240fc3f
3 changed files with 120 additions and 1 deletions
  1. +5
    -1
      mindspore/nn/layer/conv.py
  2. +59
    -0
      tests/st/ops/ascend/test_conv2d_depthwiseconv2d.py
  3. +56
    -0
      tests/st/ops/gpu/test_conv2d_depthwiseconv2d.py

+ 5
- 1
mindspore/nn/layer/conv.py View File

@@ -20,7 +20,7 @@ from mindspore import context
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops.primitive import constexpr from mindspore.ops.primitive import constexpr
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
from mindspore.common.initializer import initializer, Initializer
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore._checkparam import ParamValidator as validator, Rel from mindspore._checkparam import ParamValidator as validator, Rel
from mindspore._checkparam import Validator from mindspore._checkparam import Validator
@@ -251,6 +251,10 @@ class Conv2d(_Conv):
stride=self.stride, stride=self.stride,
dilation=self.dilation) dilation=self.dilation)
weight_shape = [1, self.in_channels, *self.kernel_size] weight_shape = [1, self.in_channels, *self.kernel_size]
if isinstance(self.weight_init, Tensor):
self.weight_init = Tensor(self.weight_init.asnumpy().swapaxes(0, 1), self.weight_init.dtype)
if isinstance(self.weight_init, Initializer):
self.weight_init.shape = weight_shape
self.weight = Parameter(initializer(self.weight_init, weight_shape), name='weight') self.weight = Parameter(initializer(self.weight_init, weight_shape), name='weight')


def construct(self, x): def construct(self, x):


+ 59
- 0
tests/st/ops/ascend/test_conv2d_depthwiseconv2d.py View File

@@ -0,0 +1,59 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest

import mindspore.context as context
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore.common.initializer import Normal
from mindspore import Tensor


context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_str():
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_initializer():
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_tensor():
weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)

+ 56
- 0
tests/st/ops/gpu/test_conv2d_depthwiseconv2d.py View File

@@ -0,0 +1,56 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

import numpy as np
import pytest

import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore.common.initializer import Normal
from mindspore import Tensor
from mindspore import context

context.set_context(mode=context.GRAPH_MODE, device_target="GPU")


@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_str():
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)


@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_initializer():
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)


@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_tensor():
weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)

Loading…
Cancel
Save