|
|
|
@@ -18,88 +18,86 @@ import re |
|
|
|
import tempfile
|
|
|
|
import shutil
|
|
|
|
|
|
|
|
from collections import Counter
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
from mindspore import dataset as ds
|
|
|
|
from mindspore import nn, Tensor, context
|
|
|
|
from mindspore.nn.metrics import Accuracy
|
|
|
|
from mindspore.nn.metrics import Loss
|
|
|
|
from mindspore.nn.optim import Momentum
|
|
|
|
from mindspore.dataset.transforms import c_transforms as C
|
|
|
|
from mindspore.dataset.vision import c_transforms as CV
|
|
|
|
from mindspore.dataset.vision import Inter
|
|
|
|
from mindspore.common import dtype as mstype
|
|
|
|
from mindspore.common.initializer import TruncatedNormal
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore.common.initializer import Normal
|
|
|
|
from mindspore.train import Model
|
|
|
|
from mindspore.train.callback import SummaryCollector
|
|
|
|
|
|
|
|
from tests.summary_utils import SummaryReader
|
|
|
|
|
|
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
|
|
|
"""weight initial for conv layer"""
|
|
|
|
weight = weight_variable()
|
|
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
|
|
kernel_size=kernel_size, stride=stride, padding=padding,
|
|
|
|
weight_init=weight, has_bias=False, pad_mode="valid")
|
|
|
|
|
|
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels):
|
|
|
|
"""weight initial for fc layer"""
|
|
|
|
weight = weight_variable()
|
|
|
|
bias = weight_variable()
|
|
|
|
return nn.Dense(input_channels, out_channels, weight, bias)
|
|
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
|
|
"""
|
|
|
|
Lenet network
|
|
|
|
|
|
|
|
def weight_variable():
|
|
|
|
"""weight initial"""
|
|
|
|
return TruncatedNormal(0.02)
|
|
|
|
Args:
|
|
|
|
num_class (int): Number of classes. Default: 10.
|
|
|
|
num_channel (int): Number of channels. Default: 1.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor, output tensor
|
|
|
|
Examples:
|
|
|
|
>>> LeNet(num_class=10)
|
|
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
|
|
"""Define LeNet5 network."""
|
|
|
|
def __init__(self, num_class=10, channel=1):
|
|
|
|
"""
|
|
|
|
def __init__(self, num_class=10, num_channel=1, include_top=True):
|
|
|
|
super(LeNet5, self).__init__()
|
|
|
|
self.num_class = num_class
|
|
|
|
self.conv1 = conv(channel, 6, 5)
|
|
|
|
self.conv2 = conv(6, 16, 5)
|
|
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
|
|
|
self.fc2 = fc_with_initialize(120, 84)
|
|
|
|
self.fc3 = fc_with_initialize(84, self.num_class)
|
|
|
|
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
|
|
|
|
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
self.include_top = include_top
|
|
|
|
if self.include_top:
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
|
|
|
|
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
|
|
|
|
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
|
|
|
|
|
|
|
|
self.scalar_summary = P.ScalarSummary()
|
|
|
|
self.image_summary = P.ImageSummary()
|
|
|
|
self.histogram_summary = P.HistogramSummary()
|
|
|
|
self.tensor_summary = P.TensorSummary()
|
|
|
|
self.channel = Tensor(channel)
|
|
|
|
|
|
|
|
def construct(self, data):
|
|
|
|
"""define construct."""
|
|
|
|
self.image_summary('image', data)
|
|
|
|
output = self.conv1(data)
|
|
|
|
self.histogram_summary('histogram', output)
|
|
|
|
output = self.relu(output)
|
|
|
|
self.tensor_summary('tensor', output)
|
|
|
|
output = self.max_pool2d(output)
|
|
|
|
output = self.conv2(output)
|
|
|
|
output = self.relu(output)
|
|
|
|
output = self.max_pool2d(output)
|
|
|
|
output = self.flatten(output)
|
|
|
|
output = self.fc1(output)
|
|
|
|
output = self.relu(output)
|
|
|
|
output = self.fc2(output)
|
|
|
|
output = self.relu(output)
|
|
|
|
output = self.fc3(output)
|
|
|
|
self.channel = Tensor(num_channel)
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
self.image_summary('image', x)
|
|
|
|
x = self.conv1(x)
|
|
|
|
self.histogram_summary('histogram', x)
|
|
|
|
x = self.relu(x)
|
|
|
|
self.tensor_summary('tensor', x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.max_pool2d(x)
|
|
|
|
self.scalar_summary('scalar', self.channel)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1):
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.max_pool2d(x)
|
|
|
|
if not self.include_top:
|
|
|
|
return x
|
|
|
|
x = self.flatten(x)
|
|
|
|
x = self.relu(self.fc1(x))
|
|
|
|
x = self.relu(self.fc2(x))
|
|
|
|
x = self.fc3(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def create_dataset(data_path, num_samples=2):
|
|
|
|
"""create dataset for train or test"""
|
|
|
|
num_parallel_workers = 1
|
|
|
|
|
|
|
|
# define dataset
|
|
|
|
mnist_ds = ds.MnistDataset(data_path)
|
|
|
|
mnist_ds = ds.MnistDataset(data_path, num_samples=num_samples)
|
|
|
|
|
|
|
|
resize_height, resize_width = 32, 32
|
|
|
|
rescale = 1.0 / 255.0
|
|
|
|
@@ -122,8 +120,7 @@ def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers |
|
|
|
|
|
|
|
# apply DatasetOps
|
|
|
|
mnist_ds = mnist_ds.shuffle(buffer_size=10000) # 10000 as in LeNet train script
|
|
|
|
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
|
|
|
mnist_ds = mnist_ds.repeat(repeat_size)
|
|
|
|
mnist_ds = mnist_ds.batch(batch_size=2, drop_remainder=True)
|
|
|
|
|
|
|
|
return mnist_ds
|
|
|
|
|
|
|
|
@@ -136,6 +133,8 @@ class TestSummary: |
|
|
|
@classmethod
|
|
|
|
def setup_class(cls):
|
|
|
|
"""Run before test this class."""
|
|
|
|
device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_id=device_id)
|
|
|
|
cls.base_summary_dir = tempfile.mkdtemp(suffix='summary')
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
@@ -144,51 +143,77 @@ class TestSummary: |
|
|
|
if os.path.exists(cls.base_summary_dir):
|
|
|
|
shutil.rmtree(cls.base_summary_dir)
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_summary_ascend(self):
|
|
|
|
"""Test summary ascend."""
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
self._run_network()
|
|
|
|
|
|
|
|
def _run_network(self, dataset_sink_mode=True):
|
|
|
|
def _run_network(self, dataset_sink_mode=False, num_samples=2):
|
|
|
|
lenet = LeNet5()
|
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
|
|
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()})
|
|
|
|
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Loss()})
|
|
|
|
summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir)
|
|
|
|
summary_collector = SummaryCollector(summary_dir=summary_dir, collect_freq=1)
|
|
|
|
summary_collector = SummaryCollector(summary_dir=summary_dir, collect_freq=2)
|
|
|
|
|
|
|
|
ds_train = create_dataset(os.path.join(self.mnist_path, "train"))
|
|
|
|
ds_train = create_dataset(os.path.join(self.mnist_path, "train"), num_samples=num_samples)
|
|
|
|
model.train(1, ds_train, callbacks=[summary_collector], dataset_sink_mode=dataset_sink_mode)
|
|
|
|
|
|
|
|
ds_eval = create_dataset(os.path.join(self.mnist_path, "test"))
|
|
|
|
model.eval(ds_eval, dataset_sink_mode=dataset_sink_mode, callbacks=[summary_collector])
|
|
|
|
return summary_dir
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_summary_with_sink_mode_false(self):
|
|
|
|
"""Test summary with sink mode false, and num samples is 64."""
|
|
|
|
summary_dir = self._run_network(num_samples=10)
|
|
|
|
|
|
|
|
tag_list = self._list_summary_tags(summary_dir)
|
|
|
|
|
|
|
|
self._check_summary_result(summary_dir)
|
|
|
|
expected_tag_set = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
|
|
|
|
'fc2.weight/auto', 'input_data/auto', 'loss/auto',
|
|
|
|
'histogram', 'image', 'scalar', 'tensor'}
|
|
|
|
assert set(expected_tag_set) == set(tag_list)
|
|
|
|
|
|
|
|
# num samples is 10, batch size is 2, so step is 5, collect freq is 2,
|
|
|
|
# SummaryCollector will collect the first step and 2th, 4th step
|
|
|
|
tag_count = 3
|
|
|
|
for value in Counter(tag_list).values():
|
|
|
|
assert value == tag_count
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_summary_with_sink_mode_true(self):
|
|
|
|
"""Test summary with sink mode true, and num samples is 64."""
|
|
|
|
summary_dir = self._run_network(dataset_sink_mode=True, num_samples=10)
|
|
|
|
|
|
|
|
tag_list = self._list_summary_tags(summary_dir)
|
|
|
|
|
|
|
|
# There will not record input data when dataset sink mode is True
|
|
|
|
expected_tags = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
|
|
|
|
'fc2.weight/auto', 'loss/auto', 'histogram', 'image', 'scalar', 'tensor'}
|
|
|
|
assert set(expected_tags) == set(tag_list)
|
|
|
|
|
|
|
|
tag_count = 1
|
|
|
|
for value in Counter(tag_list).values():
|
|
|
|
assert value == tag_count
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _check_summary_result(summary_dir):
|
|
|
|
def _list_summary_tags(summary_dir):
|
|
|
|
summary_file_path = ''
|
|
|
|
for file in os.listdir(summary_dir):
|
|
|
|
if re.search("_MS", file):
|
|
|
|
summary_file_path = os.path.join(summary_dir, file)
|
|
|
|
break
|
|
|
|
assert summary_file_path
|
|
|
|
|
|
|
|
assert not summary_file_path
|
|
|
|
|
|
|
|
tags = list()
|
|
|
|
with SummaryReader(summary_file_path) as summary_reader:
|
|
|
|
tags = set()
|
|
|
|
|
|
|
|
# Read the event that record by SummaryCollector.begin
|
|
|
|
summary_reader.read_event()
|
|
|
|
|
|
|
|
summary_event = summary_reader.read_event()
|
|
|
|
for value in summary_event.summary.value:
|
|
|
|
tags.add(value.tag)
|
|
|
|
|
|
|
|
# There will not record input data when dataset sink mode is True
|
|
|
|
expected_tags = ['conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
|
|
|
|
'fc2.weight/auto', 'histogram', 'image', 'scalar', 'tensor']
|
|
|
|
assert set(expected_tags) == tags
|
|
|
|
while True:
|
|
|
|
summary_event = summary_reader.read_event()
|
|
|
|
if not summary_event:
|
|
|
|
break
|
|
|
|
for value in summary_event.summary.value:
|
|
|
|
tags.append(value.tag)
|
|
|
|
return tags
|