|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test model train """
- import os
- import re
- import tempfile
- import shutil
-
- from collections import Counter
-
- import pytest
-
- from mindspore import dataset as ds
- from mindspore import nn, Tensor, context
- from mindspore.nn.metrics import Loss
- from mindspore.nn.optim import Momentum
- from mindspore.dataset.transforms import c_transforms as C
- from mindspore.dataset.vision import c_transforms as CV
- from mindspore.dataset.vision import Inter
- from mindspore.common import dtype as mstype
- from mindspore.ops import operations as P
- from mindspore.common.initializer import Normal
- from mindspore.train import Model
- from mindspore.train.callback import SummaryCollector
-
- from tests.summary_utils import SummaryReader
-
-
- class LeNet5(nn.Cell):
- """
- Lenet network
-
- Args:
- num_class (int): Number of classes. Default: 10.
- num_channel (int): Number of channels. Default: 1.
-
- Returns:
- Tensor, output tensor
- Examples:
- >>> LeNet(num_class=10)
-
- """
- def __init__(self, num_class=10, num_channel=1, include_top=True):
- super(LeNet5, self).__init__()
- self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
- self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.include_top = include_top
- if self.include_top:
- self.flatten = nn.Flatten()
- self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
- self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
- self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
-
- self.scalar_summary = P.ScalarSummary()
- self.image_summary = P.ImageSummary()
- self.histogram_summary = P.HistogramSummary()
- self.tensor_summary = P.TensorSummary()
- self.channel = Tensor(num_channel)
-
- def construct(self, x):
- self.image_summary('image', x)
- x = self.conv1(x)
- self.histogram_summary('histogram', x)
- x = self.relu(x)
- self.tensor_summary('tensor', x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- self.scalar_summary('scalar', self.channel)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- if not self.include_top:
- return x
- x = self.flatten(x)
- x = self.relu(self.fc1(x))
- x = self.relu(self.fc2(x))
- x = self.fc3(x)
- return x
-
-
- def create_dataset(data_path, num_samples=2):
- """create dataset for train or test"""
- num_parallel_workers = 1
-
- # define dataset
- mnist_ds = ds.MnistDataset(data_path, num_samples=num_samples)
-
- resize_height, resize_width = 32, 32
- rescale = 1.0 / 255.0
- rescale_nml = 1 / 0.3081
- shift_nml = -1 * 0.1307 / 0.3081
-
- # define map operations
- resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
- rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
- rescale_op = CV.Rescale(rescale, shift=0.0)
- hwc2chw_op = CV.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- # apply map operations on images
- mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
-
- # apply DatasetOps
- mnist_ds = mnist_ds.shuffle(buffer_size=10000) # 10000 as in LeNet train script
- mnist_ds = mnist_ds.batch(batch_size=2, drop_remainder=True)
-
- return mnist_ds
-
-
- class TestSummary:
- """Test summary collector the basic function."""
- base_summary_dir = ''
- mnist_path = '/home/workspace/mindspore_dataset/mnist'
-
- @classmethod
- def setup_class(cls):
- """Run before test this class."""
- device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
- context.set_context(mode=context.GRAPH_MODE, device_id=device_id)
- cls.base_summary_dir = tempfile.mkdtemp(suffix='summary')
-
- @classmethod
- def teardown_class(cls):
- """Run after test this class."""
- if os.path.exists(cls.base_summary_dir):
- shutil.rmtree(cls.base_summary_dir)
-
- def _run_network(self, dataset_sink_mode=False, num_samples=2):
- lenet = LeNet5()
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
- model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Loss()})
- summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir)
- summary_collector = SummaryCollector(summary_dir=summary_dir, collect_freq=2)
-
- ds_train = create_dataset(os.path.join(self.mnist_path, "train"), num_samples=num_samples)
- model.train(1, ds_train, callbacks=[summary_collector], dataset_sink_mode=dataset_sink_mode)
-
- ds_eval = create_dataset(os.path.join(self.mnist_path, "test"))
- model.eval(ds_eval, dataset_sink_mode=dataset_sink_mode, callbacks=[summary_collector])
- return summary_dir
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.env_onecard
- def test_summary_with_sink_mode_false(self):
- """Test summary with sink mode false, and num samples is 64."""
- summary_dir = self._run_network(num_samples=10)
-
- tag_list = self._list_summary_tags(summary_dir)
-
- expected_tag_set = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
- 'fc2.weight/auto', 'input_data/auto', 'loss/auto',
- 'histogram', 'image', 'scalar', 'tensor'}
- assert set(expected_tag_set) == set(tag_list)
-
- # num samples is 10, batch size is 2, so step is 5, collect freq is 2,
- # SummaryCollector will collect the first step and 2th, 4th step
- tag_count = 3
- for value in Counter(tag_list).values():
- assert value == tag_count
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.env_onecard
- def test_summary_with_sink_mode_true(self):
- """Test summary with sink mode true, and num samples is 64."""
- summary_dir = self._run_network(dataset_sink_mode=True, num_samples=10)
-
- tag_list = self._list_summary_tags(summary_dir)
-
- # There will not record input data when dataset sink mode is True
- expected_tags = {'conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
- 'fc2.weight/auto', 'loss/auto', 'histogram', 'image', 'scalar', 'tensor'}
- assert set(expected_tags) == set(tag_list)
-
- tag_count = 1
- for value in Counter(tag_list).values():
- assert value == tag_count
-
- @staticmethod
- def _list_summary_tags(summary_dir):
- summary_file_path = ''
- for file in os.listdir(summary_dir):
- if re.search("_MS", file):
- summary_file_path = os.path.join(summary_dir, file)
- break
- assert summary_file_path
-
- tags = list()
- with SummaryReader(summary_file_path) as summary_reader:
-
- while True:
- summary_event = summary_reader.read_event()
- if not summary_event:
- break
- for value in summary_event.summary.value:
- tags.append(value.tag)
- return tags
|