Browse Source

!8290 modify example

From: @lijiaqi0612
Reviewed-by: @liangchenghui,@kingxian
Signed-off-by: @liangchenghui
tags/v1.1.0
mindspore-ci-bot Gitee 5 years ago
parent
commit
a8478839c9
5 changed files with 8 additions and 8 deletions
  1. +1
    -1
      mindspore/nn/optim/adam.py
  2. +1
    -1
      mindspore/nn/optim/ftrl.py
  3. +1
    -1
      mindspore/nn/optim/lazyadam.py
  4. +1
    -1
      mindspore/nn/optim/proximal_ada_grad.py
  5. +4
    -4
      mindspore/nn/wrap/loss_scale.py

+ 1
- 1
mindspore/nn/optim/adam.py View File

@@ -337,7 +337,7 @@ class Adam(Optimizer):
"""If the input value is set to "CPU", the parameters will be updated on the host using the Fused """If the input value is set to "CPU", the parameters will be updated on the host using the Fused
optimizer operation.""" optimizer operation."""
if not isinstance(value, str): if not isinstance(value, str):
raise ValueError("The value must be str type, but got value type is {}".format(type(value)))
raise TypeError("The value must be str type, but got value type is {}".format(type(value)))


if value not in ('CPU', 'Ascend'): if value not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value)) raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value))


+ 1
- 1
mindspore/nn/optim/ftrl.py View File

@@ -190,7 +190,7 @@ class FTRL(Optimizer):
"""If the input value is set to "CPU", the parameters will be updated on the host using the Fused """If the input value is set to "CPU", the parameters will be updated on the host using the Fused
optimizer operation.""" optimizer operation."""
if not isinstance(value, str): if not isinstance(value, str):
raise ValueError("The value must be str type, but got value type is {}".format(type(value)))
raise TypeError("The value must be str type, but got value type is {}".format(type(value)))


if value not in ('CPU', 'Ascend'): if value not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value)) raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value))


+ 1
- 1
mindspore/nn/optim/lazyadam.py View File

@@ -255,7 +255,7 @@ class LazyAdam(Optimizer):
"""If the input value is set to "CPU", the parameters will be updated on the host using the Fused """If the input value is set to "CPU", the parameters will be updated on the host using the Fused
optimizer operation.""" optimizer operation."""
if not isinstance(value, str): if not isinstance(value, str):
raise ValueError("The value must be str type, but got value type is {}".format(type(value)))
raise TypeError("The value must be str type, but got value type is {}".format(type(value)))


if value not in ('CPU', 'Ascend'): if value not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value)) raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value))


+ 1
- 1
mindspore/nn/optim/proximal_ada_grad.py View File

@@ -159,7 +159,7 @@ class ProximalAdagrad(Optimizer):
"""If the input value is set to "CPU", the parameters will be updated on the host using the Fused """If the input value is set to "CPU", the parameters will be updated on the host using the Fused
optimizer operation.""" optimizer operation."""
if not isinstance(value, str): if not isinstance(value, str):
raise ValueError("The value must be str type, but got value type is {}".format(type(value)))
raise TypeError("The value must be str type, but got value type is {}".format(type(value)))
if value not in ('CPU', 'Ascend'): if value not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value)) raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value))


+ 4
- 4
mindspore/nn/wrap/loss_scale.py View File

@@ -79,13 +79,13 @@ class DynamicLossScaleUpdateCell(Cell):
>>> net_with_loss = Net() >>> net_with_loss = Net()
>>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9) >>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> manager = nn.DynamicLossScaleUpdateCell(loss_scale_value=2**12, scale_factor=2, scale_window=1000) >>> manager = nn.DynamicLossScaleUpdateCell(loss_scale_value=2**12, scale_factor=2, scale_window=1000)
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager)
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_sense=manager)
>>> train_network.set_train() >>> train_network.set_train()
>>> >>>
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) >>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
>>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32) >>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
>>> output = train_network(inputs, label, scaling_sens)
>>> output = train_network(inputs, label, scale_sense=scaling_sens)
""" """


def __init__(self, def __init__(self,
@@ -145,13 +145,13 @@ class FixedLossScaleUpdateCell(Cell):
>>> net_with_loss = Net() >>> net_with_loss = Net()
>>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9) >>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=2**12) >>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=2**12)
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager)
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_sense=manager)
>>> train_network.set_train() >>> train_network.set_train()
>>> >>>
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) >>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
>>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32) >>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
>>> output = train_network(inputs, label, scaling_sens)
>>> output = train_network(inputs, label, scale_sense=scaling_sens)
""" """


def __init__(self, loss_scale_value): def __init__(self, loss_scale_value):


Loading…
Cancel
Save