|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """lazy adam"""
- from mindspore.common import dtype as mstype
- from mindspore.common.initializer import initializer
- from mindspore.ops import operations as P
- from mindspore.ops import composite as C
- from mindspore.ops import functional as F
- from mindspore.common.parameter import Parameter
- from mindspore.common.tensor import Tensor
- from mindspore._checkparam import Validator as validator
- from mindspore._checkparam import Rel
- from .optimizer import Optimizer
-
- _lazy_adam_opt = C.MultitypeFuncGraph("lazy_adam_opt")
-
-
- @_lazy_adam_opt.register("Function", "Function", "Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
- "Tensor", "Tensor", "Tensor", "Tensor", "RowTensor", "Tensor", "Tensor", "Tensor", "Bool")
- def _run_opt_with_sparse(opt, sparse_opt, push, pull, use_locking, use_nesterov, target, beta1_power, beta2_power,
- beta1, beta2, eps, lr, gradient, params, m, v, ps_parameter):
- """Apply sparse lazy adam optimizer to the weight parameter when the gradient is sparse."""
- success = True
- indices = gradient.indices
- values = gradient.values
- if ps_parameter:
- op_shape = P.Shape()
- shapes = (op_shape(params), op_shape(m), op_shape(v),
- op_shape(beta1_power), op_shape(beta2_power), op_shape(lr), op_shape(beta1),
- op_shape(beta2), op_shape(eps), op_shape(values), op_shape(indices))
- success = F.depend(success, pull(push((beta1_power, beta2_power, lr, beta1, beta2,
- eps, values, indices), shapes), params))
- return success
-
- if not target:
- success = F.depend(success, sparse_opt(params, m, v, beta1_power, beta2_power, lr, beta1, beta2,
- eps, values, indices))
- else:
- op_gather = P.GatherV2()
- op_sqrt = P.Sqrt()
- scatter_add = P.ScatterAdd(use_locking)
- scatter_update = P.ScatterUpdate(use_locking)
-
- m_slice = op_gather(m, indices, 0)
- v_slice = op_gather(v, indices, 0)
-
- next_m = m_slice * beta1 + values * (1 - beta1)
- next_v = v_slice * beta2 + values * values * (1 - beta2)
-
- lr_t = lr * op_sqrt(1 - beta2_power) / (1 - beta1_power)
-
- if use_nesterov:
- m_temp = beta1 * next_m + values * (1 - beta1)
- param_update = m_temp / (op_sqrt(next_v) + eps)
- else:
- param_update = next_m / (op_sqrt(next_v) + eps)
-
- success = F.depend(success, scatter_add(params, indices, - lr_t * param_update))
- success = F.depend(success, scatter_update(m, indices, next_m))
- success = F.depend(success, scatter_update(v, indices, next_v))
-
- return success
-
-
- @_lazy_adam_opt.register("Function", "Function", "Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
- "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Bool")
- def _run_opt_with_one_number(opt, sparse_opt, push, pull, use_locking, use_nesterov, target, beta1_power,
- beta2_power, beta1, beta2, eps, lr, gradient, params, moment1, moment2, ps_parameter):
- """Apply lazy adam optimizer to the weight parameter using Tensor."""
- success = True
- if ps_parameter:
- op_shape = P.Shape()
- success = F.depend(success, pull(push((beta1_power, beta2_power, lr, beta1, beta2, eps, gradient),
- (op_shape(params), op_shape(moment1), op_shape(moment2))), params))
- else:
- success = F.depend(success, opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
- eps, gradient))
- return success
-
-
- def _check_param_value(beta1, beta2, eps, weight_decay, prim_name):
- """Check the type of inputs."""
- validator.check_value_type("beta1", beta1, [float], prim_name)
- validator.check_value_type("beta2", beta2, [float], prim_name)
- validator.check_value_type("eps", eps, [float], prim_name)
- validator.check_value_type("weight_dacay", weight_decay, [float], prim_name)
- validator.check_float_range(beta1, 0.0, 1.0, Rel.INC_NEITHER, "beta1", prim_name)
- validator.check_float_range(beta2, 0.0, 1.0, Rel.INC_NEITHER, "beta2", prim_name)
- validator.check_positive_float(eps, "eps", prim_name)
- validator.check_non_negative_float(weight_decay, "weight_decay", prim_name)
-
-
- class LazyAdam(Optimizer):
- r"""
- Updates gradients by Adaptive Moment Estimation (Adam) algorithm.
-
- The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
-
- The updating formulas are as follows,
-
- .. math::
- \begin{array}{ll} \\
- m = \beta_1 * m + (1 - \beta_1) * g \\
- v = \beta_2 * v + (1 - \beta_2) * g * g \\
- l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
- w = w - l * \frac{m}{\sqrt{v} + \epsilon}
- \end{array}
-
- :math:`m` represents the 1st moment vector `moment1`, :math:`v` represents the 2nd moment vector `moment2`,
- :math:`g` represents `gradients`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent
- `beta1` and `beta2`, :math:`t` represents updating step while :math:`beta_1^t` and :math:`beta_2^t` represent
- `beta1_power` and `beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `params`,
- :math:`\epsilon` represents `eps`.
-
- Note:
- When separating parameter groups, the weight decay in each group will be applied on the parameters if the
- weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
- on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
-
- To improve parameter groups performance, the customized order of parameters can be supported.
-
- The sparse strategy is applied while the SparseGatherV2 operator being used for forward network.
- The sparse behavior, to be notice, is not equivalent to the
- original Adam algorithm, as only the current indices parames will be updated. The sparse feature is under
- continuous development. If the sparse strategy wants to be executed on the host, set the target to the CPU.
-
- Args:
- params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
- the element in `params` must be class `Parameter`. When the `params` is a list of `dict`, the "params",
- "lr" and "weight_decay" are the keys can be parsed.
-
- - params: Required. The value must be a list of `Parameter`.
-
- - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
- If not, the `learning_rate` in the API will be used.
-
- - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
- will be used. If not, the `weight_decay` in the API will be used.
-
- - order_params: Optional. If "order_params" in the keys, the value must be the order of parameters and
- the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
- in the value of 'order_params' must be in one of group parameters.
-
- learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate.
- When the learning_rate is an Iterable or a Tensor in a 1D dimension, use dynamic learning rate, then
- the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
- use dynamic learning rate, the i-th learning rate will be calculated during the process of training
- according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero
- dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be
- equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
- Default: 1e-3.
- beta1 (float): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
- Default: 0.9.
- beta2 (float): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
- Default: 0.999.
- eps (float): Term added to the denominator to improve numerical stability. Should be greater than 0. Default:
- 1e-8.
- use_locking (bool): Whether to enable a lock to protect variable tensors from being updated.
- If true, updates of the var, m, and v tensors will be protected by a lock.
- If false, the result is unpredictable. Default: False.
- use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
- If true, update the gradients using NAG.
- If true, update the gradients without using NAG. Default: False.
- weight_decay (float): Weight decay (L2 penalty). Default: 0.0.
- loss_scale (float): A floating point value for the loss scale. Should be equal to or greater than 1. Default:
- 1.0.
-
- Inputs:
- - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
-
- Outputs:
- Tensor[bool], the value is True.
-
- Examples:
- >>> net = Net()
- >>> #1) All parameters use the same learning rate and weight decay
- >>> optim = nn.LazyAdam(params=net.trainable_params())
- >>>
- >>> #2) Use parameter groups and set different values
- >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
- >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
- >>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
- >>> {'params': no_conv_params, 'lr': 0.01},
- >>> {'order_params': net.trainable_params()}]
- >>> optim = nn.LazyAdam(group_params, learning_rate=0.1, weight_decay=0.0)
- >>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
- >>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
- >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
- >>>
- >>> loss = nn.SoftmaxCrossEntropyWithLogits()
- >>> model = Model(net, loss_fn=loss, optimizer=optim)
- """
-
- def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
- use_nesterov=False, weight_decay=0.0, loss_scale=1.0):
- super(LazyAdam, self).__init__(learning_rate, params, weight_decay, loss_scale)
- _check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
- validator.check_value_type("use_locking", use_locking, [bool], self.cls_name)
- validator.check_value_type("use_nesterov", use_nesterov, [bool], self.cls_name)
-
- self.beta1 = Tensor(beta1, mstype.float32)
- self.beta2 = Tensor(beta2, mstype.float32)
- self.beta1_power = Parameter(initializer(1, [1], mstype.float32), name="beta1_power")
- self.beta2_power = Parameter(initializer(1, [1], mstype.float32), name="beta2_power")
- self.eps = Tensor(eps, mstype.float32)
- self.use_nesterov = use_nesterov
- self.use_locking = use_locking
- self._is_device = True
- self.moment1 = self.parameters.clone(prefix="moment1", init='zeros')
- self.moment2 = self.parameters.clone(prefix="moment2", init='zeros')
-
- self.hyper_map = C.HyperMap()
- self.opt = P.Adam(use_locking, use_nesterov)
- self.sparse_opt = P.FusedSparseLazyAdam(use_locking, use_nesterov)
- self.sparse_opt.add_prim_attr("primitive_target", "CPU")
- self._ps_pull = P.Pull()
- self._ps_push = P.Push("Adam", [0, 1, 2])
- self._ps_push.add_prim_attr("use_nesterov", use_nesterov)
-
- def construct(self, gradients):
- gradients = self.decay_weight(gradients)
- gradients = self.scale_grad(gradients)
- gradients = self._grad_sparse_indices_deduplicate(gradients)
- lr = self.get_lr()
-
- self.beta1_power = self.beta1_power * self.beta1
- self.beta2_power = self.beta2_power * self.beta2
-
- if self.is_group_lr:
- success = self.map_(F.partial(_lazy_adam_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
- self.use_locking, self.use_nesterov, self._is_device,
- self.beta1_power, self.beta2_power, self.beta1, self.beta2, self.eps),
- lr, gradients, self.parameters, self.moment1, self.moment2, self.ps_parameters)
- else:
- success = self.map_(F.partial(_lazy_adam_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
- self.use_locking, self.use_nesterov, self._is_device,
- self.beta1_power, self.beta2_power, self.beta1, self.beta2, self.eps, lr),
- gradients, self.parameters, self.moment1, self.moment2, self.ps_parameters)
- return success
-
- @Optimizer.target.setter
- def target(self, value):
- """If the input value is set to "CPU", the parameters will be updated on the host using the Fused
- optimizer operation."""
- if not isinstance(value, str):
- raise TypeError("The value must be str type, but got value type is {}".format(type(value)))
-
- if value not in ('CPU', 'Ascend'):
- raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(value))
-
- self._is_device = (value != 'CPU')
- self._target = value
|