| @@ -45,7 +45,6 @@ args = parser.parse_args() | |||
| if __name__ == "__main__": | |||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) | |||
| ds_eval = create_dataset(os.path.join(args.data_path, "test"), cfg.batch_size, 1) | |||
| step_size = ds_eval.get_dataset_size() | |||
| # define fusion network | |||
| network = LeNet5Fusion(cfg.num_classes) | |||
| @@ -17,7 +17,7 @@ | |||
| import os | |||
| import argparse | |||
| from src.config import quant_set, config_quant, config_noquant | |||
| from src.config import config_quant | |||
| from src.dataset import create_dataset | |||
| from src.crossentropy import CrossEntropy | |||
| from models.resnet_quant import resnet50_quant | |||
| @@ -34,7 +34,7 @@ parser.add_argument('--device_target', type=str, default='Ascend', help='Device | |||
| args_opt = parser.parse_args() | |||
| context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False) | |||
| config = config_quant if quant_set.quantization_aware else config_noquant | |||
| config = config_quant | |||
| if args_opt.device_target == "Ascend": | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| @@ -43,12 +43,11 @@ if args_opt.device_target == "Ascend": | |||
| if __name__ == '__main__': | |||
| # define fusion network | |||
| net = resnet50_quant(class_num=config.class_num) | |||
| if quant_set.quantization_aware: | |||
| # convert fusion network to quantization aware network | |||
| net = quant.convert_quant_network(net, | |||
| bn_fold=True, | |||
| per_channel=[True, False], | |||
| symmetric=[True, False]) | |||
| # convert fusion network to quantization aware network | |||
| net = quant.convert_quant_network(net, | |||
| bn_fold=True, | |||
| per_channel=[True, False], | |||
| symmetric=[True, False]) | |||
| # define network loss | |||
| if not config.use_label_smooth: | |||
| config.label_smooth_factor = 0.0 | |||
| @@ -23,9 +23,9 @@ import mindspore.dataset.transforms.vision.c_transforms as C | |||
| import mindspore.dataset.transforms.c_transforms as C2 | |||
| import mindspore.dataset.transforms.vision.py_transforms as P | |||
| from mindspore.communication.management import init, get_rank, get_group_size | |||
| from src.config import quant_set, config_quant, config_noquant | |||
| from src.config import config_quant | |||
| config = config_quant if quant_set.quantization_aware else config_noquant | |||
| config = config_quant | |||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): | |||
| @@ -0,0 +1,44 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| network config setting, will be used in test_lenet_quant.py | |||
| """ | |||
| from easydict import EasyDict as edict | |||
| nonquant_cfg = edict({ | |||
| 'num_classes': 10, | |||
| 'lr': 0.01, | |||
| 'momentum': 0.9, | |||
| 'epoch_size': 10, | |||
| 'batch_size': 32, | |||
| 'buffer_size': 1000, | |||
| 'image_height': 32, | |||
| 'image_width': 32, | |||
| 'save_checkpoint_steps': 1875, | |||
| 'keep_checkpoint_max': 10, | |||
| }) | |||
| quant_cfg = edict({ | |||
| 'num_classes': 10, | |||
| 'lr': 0.01, | |||
| 'momentum': 0.9, | |||
| 'epoch_size': 10, | |||
| 'batch_size': 64, | |||
| 'buffer_size': 1000, | |||
| 'image_height': 32, | |||
| 'image_width': 32, | |||
| 'keep_checkpoint_max': 10, | |||
| }) | |||
| @@ -0,0 +1,60 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| Produce the dataset | |||
| """ | |||
| import mindspore.dataset as ds | |||
| import mindspore.dataset.transforms.vision.c_transforms as CV | |||
| import mindspore.dataset.transforms.c_transforms as C | |||
| from mindspore.dataset.transforms.vision import Inter | |||
| from mindspore.common import dtype as mstype | |||
| def create_dataset(data_path, batch_size=32, repeat_size=1, | |||
| num_parallel_workers=1): | |||
| """ | |||
| create dataset for train or test | |||
| """ | |||
| # define dataset | |||
| mnist_ds = ds.MnistDataset(data_path) | |||
| resize_height, resize_width = 32, 32 | |||
| rescale = 1.0 / 255.0 | |||
| shift = 0.0 | |||
| rescale_nml = 1 / 0.3081 | |||
| shift_nml = -1 * 0.1307 / 0.3081 | |||
| # define map operations | |||
| resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode | |||
| rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) | |||
| rescale_op = CV.Rescale(rescale, shift) | |||
| hwc2chw_op = CV.HWC2CHW() | |||
| type_cast_op = C.TypeCast(mstype.int32) | |||
| # apply map operations on images | |||
| mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) | |||
| # apply DatasetOps | |||
| buffer_size = 10000 | |||
| mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script | |||
| mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) | |||
| mnist_ds = mnist_ds.repeat(repeat_size) | |||
| return mnist_ds | |||
| @@ -0,0 +1,79 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """LeNet.""" | |||
| import mindspore.nn as nn | |||
| from mindspore.common.initializer import TruncatedNormal | |||
| def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): | |||
| """weight initial for conv layer""" | |||
| weight = weight_variable() | |||
| return nn.Conv2d(in_channels, out_channels, | |||
| kernel_size=kernel_size, stride=stride, padding=padding, | |||
| weight_init=weight, has_bias=False, pad_mode="valid") | |||
| def fc_with_initialize(input_channels, out_channels): | |||
| """weight initial for fc layer""" | |||
| weight = weight_variable() | |||
| bias = weight_variable() | |||
| return nn.Dense(input_channels, out_channels, weight, bias) | |||
| def weight_variable(): | |||
| """weight initial""" | |||
| return TruncatedNormal(0.02) | |||
| class LeNet5(nn.Cell): | |||
| """ | |||
| Lenet network | |||
| Args: | |||
| num_class (int): Num classes. Default: 10. | |||
| Returns: | |||
| Tensor, output tensor | |||
| Examples: | |||
| >>> LeNet(num_class=10) | |||
| """ | |||
| def __init__(self, num_class=10, channel=1): | |||
| super(LeNet5, self).__init__() | |||
| self.num_class = num_class | |||
| self.conv1 = conv(channel, 6, 5) | |||
| self.conv2 = conv(6, 16, 5) | |||
| self.fc1 = fc_with_initialize(16 * 5 * 5, 120) | |||
| self.fc2 = fc_with_initialize(120, 84) | |||
| self.fc3 = fc_with_initialize(84, self.num_class) | |||
| self.relu = nn.ReLU() | |||
| self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||
| self.flatten = nn.Flatten() | |||
| def construct(self, x): | |||
| x = self.conv1(x) | |||
| x = self.relu(x) | |||
| x = self.max_pool2d(x) | |||
| x = self.conv2(x) | |||
| x = self.relu(x) | |||
| x = self.max_pool2d(x) | |||
| x = self.flatten(x) | |||
| x = self.fc1(x) | |||
| x = self.relu(x) | |||
| x = self.fc2(x) | |||
| x = self.relu(x) | |||
| x = self.fc3(x) | |||
| return x | |||
| @@ -0,0 +1,58 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """LeNet.""" | |||
| import mindspore.nn as nn | |||
| class LeNet5(nn.Cell): | |||
| """ | |||
| Lenet network | |||
| Args: | |||
| num_class (int): Num classes. Default: 10. | |||
| Returns: | |||
| Tensor, output tensor | |||
| Examples: | |||
| >>> LeNet(num_class=10) | |||
| """ | |||
| def __init__(self, num_class=10, channel=1): | |||
| super(LeNet5, self).__init__() | |||
| self.type = "fusion" | |||
| self.num_class = num_class | |||
| # change `nn.Conv2d` to `nn.Conv2dBnAct` | |||
| self.conv1 = nn.Conv2dBnAct(channel, 6, 5, pad_mode='valid', activation='relu') | |||
| self.conv2 = nn.Conv2dBnAct(6, 16, 5, pad_mode='valid', activation='relu') | |||
| # change `nn.Dense` to `nn.DenseBnAct` | |||
| self.fc1 = nn.DenseBnAct(16 * 5 * 5, 120, activation='relu') | |||
| self.fc2 = nn.DenseBnAct(120, 84, activation='relu') | |||
| self.fc3 = nn.DenseBnAct(84, self.num_class) | |||
| self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||
| self.flatten = nn.Flatten() | |||
| def construct(self, x): | |||
| x = self.conv1(x) | |||
| x = self.max_pool2d(x) | |||
| x = self.conv2(x) | |||
| x = self.max_pool2d(x) | |||
| x = self.flatten(x) | |||
| x = self.fc1(x) | |||
| x = self.fc2(x) | |||
| x = self.fc3(x) | |||
| return x | |||
| @@ -0,0 +1,136 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| train and infer lenet quantization network | |||
| """ | |||
| import os | |||
| import pytest | |||
| from mindspore import context | |||
| import mindspore.nn as nn | |||
| from mindspore.nn.metrics import Accuracy | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.train import Model | |||
| from mindspore.train.quant import quant | |||
| from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net | |||
| from dataset import create_dataset | |||
| from config import nonquant_cfg, quant_cfg | |||
| from lenet import LeNet5 | |||
| from lenet_fusion import LeNet5 as LeNet5Fusion | |||
| device_target = 'GPU' | |||
| data_path = "/home/workspace/mindspore_dataset/mnist" | |||
| def train_lenet(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target=device_target) | |||
| cfg = nonquant_cfg | |||
| ds_train = create_dataset(os.path.join(data_path, "train"), | |||
| cfg.batch_size) | |||
| network = LeNet5(cfg.num_classes) | |||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||
| net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||
| time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) | |||
| config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, | |||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||
| ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) | |||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||
| print("============== Starting Training Lenet==============") | |||
| model.train(cfg['epoch_size'], ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], | |||
| dataset_sink_mode=True) | |||
| def train_lenet_quant(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target=device_target) | |||
| cfg = quant_cfg | |||
| ckpt_path = './checkpoint_lenet-10_1875.ckpt' | |||
| ds_train = create_dataset(os.path.join(data_path, "train"), cfg.batch_size, 1) | |||
| step_size = ds_train.get_dataset_size() | |||
| # define fusion network | |||
| network = LeNet5Fusion(cfg.num_classes) | |||
| # load quantization aware network checkpoint | |||
| param_dict = load_checkpoint(ckpt_path) | |||
| load_nonquant_param_into_quant_net(network, param_dict) | |||
| # convert fusion network to quantization aware network | |||
| network = quant.convert_quant_network(network, quant_delay=900, bn_fold=False, per_channel=[True, False], | |||
| symmetric=[False, False]) | |||
| # define network loss | |||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||
| # define network optimization | |||
| net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||
| # call back and monitor | |||
| config_ckpt = CheckpointConfig(save_checkpoint_steps=cfg.epoch_size * step_size, | |||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||
| ckpt_callback = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ckpt) | |||
| # define model | |||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||
| print("============== Starting Training ==============") | |||
| model.train(cfg['epoch_size'], ds_train, callbacks=[ckpt_callback, LossMonitor()], | |||
| dataset_sink_mode=True) | |||
| print("============== End Training ==============") | |||
| def eval_quant(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target=device_target) | |||
| cfg = quant_cfg | |||
| ds_eval = create_dataset(os.path.join(data_path, "test"), cfg.batch_size, 1) | |||
| ckpt_path = './checkpoint_lenet_1-10_937.ckpt' | |||
| # define fusion network | |||
| network = LeNet5Fusion(cfg.num_classes) | |||
| # convert fusion network to quantization aware network | |||
| network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000, | |||
| per_channel=[True, False]) | |||
| # define loss | |||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||
| # define network optimization | |||
| net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||
| # call back and monitor | |||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||
| # load quantization aware network checkpoint | |||
| param_dict = load_checkpoint(ckpt_path) | |||
| not_load_param = load_param_into_net(network, param_dict) | |||
| if not_load_param: | |||
| raise ValueError("Load param into net fail!") | |||
| print("============== Starting Testing ==============") | |||
| acc = model.eval(ds_eval, dataset_sink_mode=True) | |||
| print("============== {} ==============".format(acc)) | |||
| assert acc['Accuracy'] > 0.98 | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_lenet_quant(): | |||
| train_lenet() | |||
| train_lenet_quant() | |||
| eval_quant() | |||
| if __name__ == "__main__": | |||
| train_lenet_quant() | |||