| @@ -45,7 +45,6 @@ args = parser.parse_args() | |||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) | context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) | ||||
| ds_eval = create_dataset(os.path.join(args.data_path, "test"), cfg.batch_size, 1) | ds_eval = create_dataset(os.path.join(args.data_path, "test"), cfg.batch_size, 1) | ||||
| step_size = ds_eval.get_dataset_size() | |||||
| # define fusion network | # define fusion network | ||||
| network = LeNet5Fusion(cfg.num_classes) | network = LeNet5Fusion(cfg.num_classes) | ||||
| @@ -17,7 +17,7 @@ | |||||
| import os | import os | ||||
| import argparse | import argparse | ||||
| from src.config import quant_set, config_quant, config_noquant | |||||
| from src.config import config_quant | |||||
| from src.dataset import create_dataset | from src.dataset import create_dataset | ||||
| from src.crossentropy import CrossEntropy | from src.crossentropy import CrossEntropy | ||||
| from models.resnet_quant import resnet50_quant | from models.resnet_quant import resnet50_quant | ||||
| @@ -34,7 +34,7 @@ parser.add_argument('--device_target', type=str, default='Ascend', help='Device | |||||
| args_opt = parser.parse_args() | args_opt = parser.parse_args() | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False) | context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False) | ||||
| config = config_quant if quant_set.quantization_aware else config_noquant | |||||
| config = config_quant | |||||
| if args_opt.device_target == "Ascend": | if args_opt.device_target == "Ascend": | ||||
| device_id = int(os.getenv('DEVICE_ID')) | device_id = int(os.getenv('DEVICE_ID')) | ||||
| @@ -43,12 +43,11 @@ if args_opt.device_target == "Ascend": | |||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| # define fusion network | # define fusion network | ||||
| net = resnet50_quant(class_num=config.class_num) | net = resnet50_quant(class_num=config.class_num) | ||||
| if quant_set.quantization_aware: | |||||
| # convert fusion network to quantization aware network | |||||
| net = quant.convert_quant_network(net, | |||||
| bn_fold=True, | |||||
| per_channel=[True, False], | |||||
| symmetric=[True, False]) | |||||
| # convert fusion network to quantization aware network | |||||
| net = quant.convert_quant_network(net, | |||||
| bn_fold=True, | |||||
| per_channel=[True, False], | |||||
| symmetric=[True, False]) | |||||
| # define network loss | # define network loss | ||||
| if not config.use_label_smooth: | if not config.use_label_smooth: | ||||
| config.label_smooth_factor = 0.0 | config.label_smooth_factor = 0.0 | ||||
| @@ -23,9 +23,9 @@ import mindspore.dataset.transforms.vision.c_transforms as C | |||||
| import mindspore.dataset.transforms.c_transforms as C2 | import mindspore.dataset.transforms.c_transforms as C2 | ||||
| import mindspore.dataset.transforms.vision.py_transforms as P | import mindspore.dataset.transforms.vision.py_transforms as P | ||||
| from mindspore.communication.management import init, get_rank, get_group_size | from mindspore.communication.management import init, get_rank, get_group_size | ||||
| from src.config import quant_set, config_quant, config_noquant | |||||
| from src.config import config_quant | |||||
| config = config_quant if quant_set.quantization_aware else config_noquant | |||||
| config = config_quant | |||||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): | def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): | ||||
| @@ -0,0 +1,44 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| network config setting, will be used in test_lenet_quant.py | |||||
| """ | |||||
| from easydict import EasyDict as edict | |||||
| nonquant_cfg = edict({ | |||||
| 'num_classes': 10, | |||||
| 'lr': 0.01, | |||||
| 'momentum': 0.9, | |||||
| 'epoch_size': 10, | |||||
| 'batch_size': 32, | |||||
| 'buffer_size': 1000, | |||||
| 'image_height': 32, | |||||
| 'image_width': 32, | |||||
| 'save_checkpoint_steps': 1875, | |||||
| 'keep_checkpoint_max': 10, | |||||
| }) | |||||
| quant_cfg = edict({ | |||||
| 'num_classes': 10, | |||||
| 'lr': 0.01, | |||||
| 'momentum': 0.9, | |||||
| 'epoch_size': 10, | |||||
| 'batch_size': 64, | |||||
| 'buffer_size': 1000, | |||||
| 'image_height': 32, | |||||
| 'image_width': 32, | |||||
| 'keep_checkpoint_max': 10, | |||||
| }) | |||||
| @@ -0,0 +1,60 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| Produce the dataset | |||||
| """ | |||||
| import mindspore.dataset as ds | |||||
| import mindspore.dataset.transforms.vision.c_transforms as CV | |||||
| import mindspore.dataset.transforms.c_transforms as C | |||||
| from mindspore.dataset.transforms.vision import Inter | |||||
| from mindspore.common import dtype as mstype | |||||
| def create_dataset(data_path, batch_size=32, repeat_size=1, | |||||
| num_parallel_workers=1): | |||||
| """ | |||||
| create dataset for train or test | |||||
| """ | |||||
| # define dataset | |||||
| mnist_ds = ds.MnistDataset(data_path) | |||||
| resize_height, resize_width = 32, 32 | |||||
| rescale = 1.0 / 255.0 | |||||
| shift = 0.0 | |||||
| rescale_nml = 1 / 0.3081 | |||||
| shift_nml = -1 * 0.1307 / 0.3081 | |||||
| # define map operations | |||||
| resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode | |||||
| rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) | |||||
| rescale_op = CV.Rescale(rescale, shift) | |||||
| hwc2chw_op = CV.HWC2CHW() | |||||
| type_cast_op = C.TypeCast(mstype.int32) | |||||
| # apply map operations on images | |||||
| mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) | |||||
| # apply DatasetOps | |||||
| buffer_size = 10000 | |||||
| mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script | |||||
| mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) | |||||
| mnist_ds = mnist_ds.repeat(repeat_size) | |||||
| return mnist_ds | |||||
| @@ -0,0 +1,79 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """LeNet.""" | |||||
| import mindspore.nn as nn | |||||
| from mindspore.common.initializer import TruncatedNormal | |||||
| def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): | |||||
| """weight initial for conv layer""" | |||||
| weight = weight_variable() | |||||
| return nn.Conv2d(in_channels, out_channels, | |||||
| kernel_size=kernel_size, stride=stride, padding=padding, | |||||
| weight_init=weight, has_bias=False, pad_mode="valid") | |||||
| def fc_with_initialize(input_channels, out_channels): | |||||
| """weight initial for fc layer""" | |||||
| weight = weight_variable() | |||||
| bias = weight_variable() | |||||
| return nn.Dense(input_channels, out_channels, weight, bias) | |||||
| def weight_variable(): | |||||
| """weight initial""" | |||||
| return TruncatedNormal(0.02) | |||||
| class LeNet5(nn.Cell): | |||||
| """ | |||||
| Lenet network | |||||
| Args: | |||||
| num_class (int): Num classes. Default: 10. | |||||
| Returns: | |||||
| Tensor, output tensor | |||||
| Examples: | |||||
| >>> LeNet(num_class=10) | |||||
| """ | |||||
| def __init__(self, num_class=10, channel=1): | |||||
| super(LeNet5, self).__init__() | |||||
| self.num_class = num_class | |||||
| self.conv1 = conv(channel, 6, 5) | |||||
| self.conv2 = conv(6, 16, 5) | |||||
| self.fc1 = fc_with_initialize(16 * 5 * 5, 120) | |||||
| self.fc2 = fc_with_initialize(120, 84) | |||||
| self.fc3 = fc_with_initialize(84, self.num_class) | |||||
| self.relu = nn.ReLU() | |||||
| self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||||
| self.flatten = nn.Flatten() | |||||
| def construct(self, x): | |||||
| x = self.conv1(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.conv2(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.flatten(x) | |||||
| x = self.fc1(x) | |||||
| x = self.relu(x) | |||||
| x = self.fc2(x) | |||||
| x = self.relu(x) | |||||
| x = self.fc3(x) | |||||
| return x | |||||
| @@ -0,0 +1,58 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """LeNet.""" | |||||
| import mindspore.nn as nn | |||||
| class LeNet5(nn.Cell): | |||||
| """ | |||||
| Lenet network | |||||
| Args: | |||||
| num_class (int): Num classes. Default: 10. | |||||
| Returns: | |||||
| Tensor, output tensor | |||||
| Examples: | |||||
| >>> LeNet(num_class=10) | |||||
| """ | |||||
| def __init__(self, num_class=10, channel=1): | |||||
| super(LeNet5, self).__init__() | |||||
| self.type = "fusion" | |||||
| self.num_class = num_class | |||||
| # change `nn.Conv2d` to `nn.Conv2dBnAct` | |||||
| self.conv1 = nn.Conv2dBnAct(channel, 6, 5, pad_mode='valid', activation='relu') | |||||
| self.conv2 = nn.Conv2dBnAct(6, 16, 5, pad_mode='valid', activation='relu') | |||||
| # change `nn.Dense` to `nn.DenseBnAct` | |||||
| self.fc1 = nn.DenseBnAct(16 * 5 * 5, 120, activation='relu') | |||||
| self.fc2 = nn.DenseBnAct(120, 84, activation='relu') | |||||
| self.fc3 = nn.DenseBnAct(84, self.num_class) | |||||
| self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||||
| self.flatten = nn.Flatten() | |||||
| def construct(self, x): | |||||
| x = self.conv1(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.conv2(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.flatten(x) | |||||
| x = self.fc1(x) | |||||
| x = self.fc2(x) | |||||
| x = self.fc3(x) | |||||
| return x | |||||
| @@ -0,0 +1,136 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| train and infer lenet quantization network | |||||
| """ | |||||
| import os | |||||
| import pytest | |||||
| from mindspore import context | |||||
| import mindspore.nn as nn | |||||
| from mindspore.nn.metrics import Accuracy | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.train import Model | |||||
| from mindspore.train.quant import quant | |||||
| from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net | |||||
| from dataset import create_dataset | |||||
| from config import nonquant_cfg, quant_cfg | |||||
| from lenet import LeNet5 | |||||
| from lenet_fusion import LeNet5 as LeNet5Fusion | |||||
| device_target = 'GPU' | |||||
| data_path = "/home/workspace/mindspore_dataset/mnist" | |||||
| def train_lenet(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=device_target) | |||||
| cfg = nonquant_cfg | |||||
| ds_train = create_dataset(os.path.join(data_path, "train"), | |||||
| cfg.batch_size) | |||||
| network = LeNet5(cfg.num_classes) | |||||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||||
| time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) | |||||
| config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, | |||||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||||
| ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) | |||||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||||
| print("============== Starting Training Lenet==============") | |||||
| model.train(cfg['epoch_size'], ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], | |||||
| dataset_sink_mode=True) | |||||
| def train_lenet_quant(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=device_target) | |||||
| cfg = quant_cfg | |||||
| ckpt_path = './checkpoint_lenet-10_1875.ckpt' | |||||
| ds_train = create_dataset(os.path.join(data_path, "train"), cfg.batch_size, 1) | |||||
| step_size = ds_train.get_dataset_size() | |||||
| # define fusion network | |||||
| network = LeNet5Fusion(cfg.num_classes) | |||||
| # load quantization aware network checkpoint | |||||
| param_dict = load_checkpoint(ckpt_path) | |||||
| load_nonquant_param_into_quant_net(network, param_dict) | |||||
| # convert fusion network to quantization aware network | |||||
| network = quant.convert_quant_network(network, quant_delay=900, bn_fold=False, per_channel=[True, False], | |||||
| symmetric=[False, False]) | |||||
| # define network loss | |||||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| # define network optimization | |||||
| net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||||
| # call back and monitor | |||||
| config_ckpt = CheckpointConfig(save_checkpoint_steps=cfg.epoch_size * step_size, | |||||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||||
| ckpt_callback = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ckpt) | |||||
| # define model | |||||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||||
| print("============== Starting Training ==============") | |||||
| model.train(cfg['epoch_size'], ds_train, callbacks=[ckpt_callback, LossMonitor()], | |||||
| dataset_sink_mode=True) | |||||
| print("============== End Training ==============") | |||||
| def eval_quant(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=device_target) | |||||
| cfg = quant_cfg | |||||
| ds_eval = create_dataset(os.path.join(data_path, "test"), cfg.batch_size, 1) | |||||
| ckpt_path = './checkpoint_lenet_1-10_937.ckpt' | |||||
| # define fusion network | |||||
| network = LeNet5Fusion(cfg.num_classes) | |||||
| # convert fusion network to quantization aware network | |||||
| network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000, | |||||
| per_channel=[True, False]) | |||||
| # define loss | |||||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| # define network optimization | |||||
| net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||||
| # call back and monitor | |||||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||||
| # load quantization aware network checkpoint | |||||
| param_dict = load_checkpoint(ckpt_path) | |||||
| not_load_param = load_param_into_net(network, param_dict) | |||||
| if not_load_param: | |||||
| raise ValueError("Load param into net fail!") | |||||
| print("============== Starting Testing ==============") | |||||
| acc = model.eval(ds_eval, dataset_sink_mode=True) | |||||
| print("============== {} ==============".format(acc)) | |||||
| assert acc['Accuracy'] > 0.98 | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_lenet_quant(): | |||||
| train_lenet() | |||||
| train_lenet_quant() | |||||
| eval_quant() | |||||
| if __name__ == "__main__": | |||||
| train_lenet_quant() | |||||