| @@ -46,3 +46,4 @@ from .square import Square | |||
| from .tanh_grad import TanhGrad | |||
| from .tile import Tile | |||
| from .lamb_apply_optimizer_assign import LambApplyOptimizerAssign | |||
| from .lamb_apply_weight_assign import LambApplyWeightAssign | |||
| @@ -0,0 +1,56 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # =========================================================================== | |||
| """generate json desc for LambApplyWeightAssign""" | |||
| from ._utils import Expander, ExpanderInfoValidator as VLD | |||
| @VLD.check_all_formats_same | |||
| class LambApplyWeightAssign(Expander): | |||
| """LambApplyWeightAssign expander""" | |||
| def _expand(self, graph_builder): | |||
| w_norm, g_norm, input_lr, update, input_param = self.inputs | |||
| # ratio | |||
| const_zero = graph_builder.value(g_norm.dtype, 0) | |||
| const_one = graph_builder.value(g_norm.dtype, 1) | |||
| dtype = update.dtype | |||
| g_norm_greater_res = graph_builder.emit('Greater', [g_norm, const_zero]) | |||
| g_norm_greater_res_float = graph_builder.emit('Cast', [g_norm_greater_res], attrs={'dst_type': dtype}) | |||
| w_norm_g_norm = graph_builder.emit('RealDiv', [w_norm, g_norm]) | |||
| # select | |||
| g_norm_greater_res_neg = graph_builder.emit('Neg', [g_norm_greater_res_float]) | |||
| g_norm_greater_res_f = graph_builder.emit('Add', [g_norm_greater_res_neg, const_one]) | |||
| g_norm_value_1 = graph_builder.emit('Mul', [g_norm_greater_res_float, w_norm_g_norm]) | |||
| g_norm_value = graph_builder.emit('Add', [g_norm_value_1, g_norm_greater_res_f]) | |||
| w_norm_greater_res = graph_builder.emit('Greater', [w_norm, const_zero]) | |||
| w_norm_greater_res_float = graph_builder.emit('Cast', [w_norm_greater_res], attrs={'dst_type': dtype}) | |||
| # select | |||
| w_norm_greater_res_neg = graph_builder.emit('Neg', [w_norm_greater_res_float]) | |||
| w_norm_greater_res_f = graph_builder.emit('Add', [w_norm_greater_res_neg, const_one]) | |||
| w_norm_value_1 = graph_builder.emit('Mul', [w_norm_greater_res_float, g_norm_value]) | |||
| ratio = graph_builder.emit('Add', [w_norm_value_1, w_norm_greater_res_f]) | |||
| # ratio * input_lr * update | |||
| update_with_ir = graph_builder.emit('Mul', [update, input_lr]) | |||
| ratio_update_with_ir = graph_builder.emit('Mul', [update_with_ir, ratio]) | |||
| # input_param - ratio_update_with_ir | |||
| next_param = graph_builder.emit('Sub', [input_param, ratio_update_with_ir]) | |||
| return [next_param] | |||
| @@ -39,7 +39,8 @@ namespace mindspore { | |||
| namespace opt { | |||
| namespace { | |||
| constexpr size_t kAssignInputIdx = 1; | |||
| constexpr size_t kLambInputIdx = 12; | |||
| constexpr size_t kLambOptimizerInputIdx = 12; | |||
| constexpr size_t kLambWeightInputIdx = 4; | |||
| std::vector<PrimitivePtr> GetExpandOps() { | |||
| std::vector<PrimitivePtr> expand_ops = { | |||
| @@ -51,6 +52,7 @@ std::vector<PrimitivePtr> GetExpandOps() { | |||
| prim::kPrimSqrtGrad, | |||
| prim::kPrimClipByNormNoDivSum, | |||
| prim::kLambApplyOptimizerAssign, | |||
| prim::kLambApplyWeightAssign, | |||
| #elif ENABLE_GPU | |||
| prim::kPrimBiasAdd, | |||
| prim::kPrimBiasAddGrad, | |||
| @@ -176,7 +178,8 @@ ExpanderPtr GraphKernelExpander::GetExpander(const AnfNodePtr &node) { | |||
| {prim::kPrimDropout, std::make_shared<DropoutExpander>()}, | |||
| {prim::kPrimAssignAdd, std::make_shared<OpUMonadExpander>(kAssignInputIdx)}, | |||
| {prim::kPrimAssignSub, std::make_shared<OpUMonadExpander>(kAssignInputIdx)}, | |||
| {prim::kLambApplyOptimizerAssign, std::make_shared<OpUMonadExpander>(kLambInputIdx)}, | |||
| {prim::kLambApplyOptimizerAssign, std::make_shared<OpUMonadExpander>(kLambOptimizerInputIdx)}, | |||
| {prim::kLambApplyWeightAssign, std::make_shared<OpUMonadExpander>(kLambWeightInputIdx)}, | |||
| }; | |||
| for (auto &e : expanders) { | |||
| @@ -305,6 +305,8 @@ inline const PrimitivePtr kPrimTensorMove = std::make_shared<Primitive>("TensorM | |||
| inline const PrimitivePtr kPrimL2Normalize = std::make_shared<Primitive>("L2Normalize"); | |||
| inline const PrimitivePtr kPrimCustomExtractFeatures = std::make_shared<Primitive>("CustomExtractFeatures"); | |||
| inline const PrimitivePtr kLambApplyOptimizerAssign = std::make_shared<Primitive>("LambApplyOptimizerAssign"); | |||
| inline const PrimitivePtr kLambApplyWeightAssign = std::make_shared<Primitive>("LambApplyWeightAssign"); | |||
| // Comm ops | |||
| inline const PrimitivePtr kPrimMirror = std::make_shared<Primitive>("_MirrorOperator"); | |||
| inline const PrimitivePtr kPrimMirrorMiniStep = std::make_shared<Primitive>("_MirrorMiniStepOperator"); | |||
| @@ -0,0 +1,58 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.lamb_apply_weight_assign = P.LambApplyWeightAssign() | |||
| def construct(self, w_norm, g_norm, lr, update, param): | |||
| return self.lamb_apply_weight_assign(w_norm, g_norm, lr, update, param) | |||
| def get_output(w_norm, g_norm, lr, update, param, enable_graph_kernel=False): | |||
| context.set_context(enable_graph_kernel=enable_graph_kernel) | |||
| opt = Net() | |||
| output = opt(Tensor(w_norm), Tensor(g_norm), Tensor(lr), Tensor(update), Tensor(param)) | |||
| return output | |||
| def lamb_apply_weight_assign(): | |||
| w_norm = np.array([0.11]).astype(np.float32) | |||
| g_norm = np.array([1.2]).astype(np.float32) | |||
| lr = np.array([0.012]).astype(np.float32) | |||
| update = np.array([0.01, 0.03, 0.05]).astype(np.float32) | |||
| param = np.array([1, 3, 5]).astype(np.float32) | |||
| expect = get_output(w_norm, g_norm, lr, update, param, False) | |||
| output = get_output(w_norm, g_norm, lr, update, param, True) | |||
| assert np.allclose(output.asnumpy(), expect.asnumpy()) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_lamb_apply_weight_assign_ascend(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| lamb_apply_weight_assign() | |||