| @@ -46,3 +46,4 @@ from .square import Square | |||||
| from .tanh_grad import TanhGrad | from .tanh_grad import TanhGrad | ||||
| from .tile import Tile | from .tile import Tile | ||||
| from .lamb_apply_optimizer_assign import LambApplyOptimizerAssign | from .lamb_apply_optimizer_assign import LambApplyOptimizerAssign | ||||
| from .lamb_apply_weight_assign import LambApplyWeightAssign | |||||
| @@ -0,0 +1,56 @@ | |||||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # =========================================================================== | |||||
| """generate json desc for LambApplyWeightAssign""" | |||||
| from ._utils import Expander, ExpanderInfoValidator as VLD | |||||
| @VLD.check_all_formats_same | |||||
| class LambApplyWeightAssign(Expander): | |||||
| """LambApplyWeightAssign expander""" | |||||
| def _expand(self, graph_builder): | |||||
| w_norm, g_norm, input_lr, update, input_param = self.inputs | |||||
| # ratio | |||||
| const_zero = graph_builder.value(g_norm.dtype, 0) | |||||
| const_one = graph_builder.value(g_norm.dtype, 1) | |||||
| dtype = update.dtype | |||||
| g_norm_greater_res = graph_builder.emit('Greater', [g_norm, const_zero]) | |||||
| g_norm_greater_res_float = graph_builder.emit('Cast', [g_norm_greater_res], attrs={'dst_type': dtype}) | |||||
| w_norm_g_norm = graph_builder.emit('RealDiv', [w_norm, g_norm]) | |||||
| # select | |||||
| g_norm_greater_res_neg = graph_builder.emit('Neg', [g_norm_greater_res_float]) | |||||
| g_norm_greater_res_f = graph_builder.emit('Add', [g_norm_greater_res_neg, const_one]) | |||||
| g_norm_value_1 = graph_builder.emit('Mul', [g_norm_greater_res_float, w_norm_g_norm]) | |||||
| g_norm_value = graph_builder.emit('Add', [g_norm_value_1, g_norm_greater_res_f]) | |||||
| w_norm_greater_res = graph_builder.emit('Greater', [w_norm, const_zero]) | |||||
| w_norm_greater_res_float = graph_builder.emit('Cast', [w_norm_greater_res], attrs={'dst_type': dtype}) | |||||
| # select | |||||
| w_norm_greater_res_neg = graph_builder.emit('Neg', [w_norm_greater_res_float]) | |||||
| w_norm_greater_res_f = graph_builder.emit('Add', [w_norm_greater_res_neg, const_one]) | |||||
| w_norm_value_1 = graph_builder.emit('Mul', [w_norm_greater_res_float, g_norm_value]) | |||||
| ratio = graph_builder.emit('Add', [w_norm_value_1, w_norm_greater_res_f]) | |||||
| # ratio * input_lr * update | |||||
| update_with_ir = graph_builder.emit('Mul', [update, input_lr]) | |||||
| ratio_update_with_ir = graph_builder.emit('Mul', [update_with_ir, ratio]) | |||||
| # input_param - ratio_update_with_ir | |||||
| next_param = graph_builder.emit('Sub', [input_param, ratio_update_with_ir]) | |||||
| return [next_param] | |||||
| @@ -39,7 +39,8 @@ namespace mindspore { | |||||
| namespace opt { | namespace opt { | ||||
| namespace { | namespace { | ||||
| constexpr size_t kAssignInputIdx = 1; | constexpr size_t kAssignInputIdx = 1; | ||||
| constexpr size_t kLambInputIdx = 12; | |||||
| constexpr size_t kLambOptimizerInputIdx = 12; | |||||
| constexpr size_t kLambWeightInputIdx = 4; | |||||
| std::vector<PrimitivePtr> GetExpandOps() { | std::vector<PrimitivePtr> GetExpandOps() { | ||||
| std::vector<PrimitivePtr> expand_ops = { | std::vector<PrimitivePtr> expand_ops = { | ||||
| @@ -51,6 +52,7 @@ std::vector<PrimitivePtr> GetExpandOps() { | |||||
| prim::kPrimSqrtGrad, | prim::kPrimSqrtGrad, | ||||
| prim::kPrimClipByNormNoDivSum, | prim::kPrimClipByNormNoDivSum, | ||||
| prim::kLambApplyOptimizerAssign, | prim::kLambApplyOptimizerAssign, | ||||
| prim::kLambApplyWeightAssign, | |||||
| #elif ENABLE_GPU | #elif ENABLE_GPU | ||||
| prim::kPrimBiasAdd, | prim::kPrimBiasAdd, | ||||
| prim::kPrimBiasAddGrad, | prim::kPrimBiasAddGrad, | ||||
| @@ -176,7 +178,8 @@ ExpanderPtr GraphKernelExpander::GetExpander(const AnfNodePtr &node) { | |||||
| {prim::kPrimDropout, std::make_shared<DropoutExpander>()}, | {prim::kPrimDropout, std::make_shared<DropoutExpander>()}, | ||||
| {prim::kPrimAssignAdd, std::make_shared<OpUMonadExpander>(kAssignInputIdx)}, | {prim::kPrimAssignAdd, std::make_shared<OpUMonadExpander>(kAssignInputIdx)}, | ||||
| {prim::kPrimAssignSub, std::make_shared<OpUMonadExpander>(kAssignInputIdx)}, | {prim::kPrimAssignSub, std::make_shared<OpUMonadExpander>(kAssignInputIdx)}, | ||||
| {prim::kLambApplyOptimizerAssign, std::make_shared<OpUMonadExpander>(kLambInputIdx)}, | |||||
| {prim::kLambApplyOptimizerAssign, std::make_shared<OpUMonadExpander>(kLambOptimizerInputIdx)}, | |||||
| {prim::kLambApplyWeightAssign, std::make_shared<OpUMonadExpander>(kLambWeightInputIdx)}, | |||||
| }; | }; | ||||
| for (auto &e : expanders) { | for (auto &e : expanders) { | ||||
| @@ -305,6 +305,8 @@ inline const PrimitivePtr kPrimTensorMove = std::make_shared<Primitive>("TensorM | |||||
| inline const PrimitivePtr kPrimL2Normalize = std::make_shared<Primitive>("L2Normalize"); | inline const PrimitivePtr kPrimL2Normalize = std::make_shared<Primitive>("L2Normalize"); | ||||
| inline const PrimitivePtr kPrimCustomExtractFeatures = std::make_shared<Primitive>("CustomExtractFeatures"); | inline const PrimitivePtr kPrimCustomExtractFeatures = std::make_shared<Primitive>("CustomExtractFeatures"); | ||||
| inline const PrimitivePtr kLambApplyOptimizerAssign = std::make_shared<Primitive>("LambApplyOptimizerAssign"); | inline const PrimitivePtr kLambApplyOptimizerAssign = std::make_shared<Primitive>("LambApplyOptimizerAssign"); | ||||
| inline const PrimitivePtr kLambApplyWeightAssign = std::make_shared<Primitive>("LambApplyWeightAssign"); | |||||
| // Comm ops | // Comm ops | ||||
| inline const PrimitivePtr kPrimMirror = std::make_shared<Primitive>("_MirrorOperator"); | inline const PrimitivePtr kPrimMirror = std::make_shared<Primitive>("_MirrorOperator"); | ||||
| inline const PrimitivePtr kPrimMirrorMiniStep = std::make_shared<Primitive>("_MirrorMiniStepOperator"); | inline const PrimitivePtr kPrimMirrorMiniStep = std::make_shared<Primitive>("_MirrorMiniStepOperator"); | ||||
| @@ -0,0 +1,58 @@ | |||||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| class Net(nn.Cell): | |||||
| def __init__(self): | |||||
| super(Net, self).__init__() | |||||
| self.lamb_apply_weight_assign = P.LambApplyWeightAssign() | |||||
| def construct(self, w_norm, g_norm, lr, update, param): | |||||
| return self.lamb_apply_weight_assign(w_norm, g_norm, lr, update, param) | |||||
| def get_output(w_norm, g_norm, lr, update, param, enable_graph_kernel=False): | |||||
| context.set_context(enable_graph_kernel=enable_graph_kernel) | |||||
| opt = Net() | |||||
| output = opt(Tensor(w_norm), Tensor(g_norm), Tensor(lr), Tensor(update), Tensor(param)) | |||||
| return output | |||||
| def lamb_apply_weight_assign(): | |||||
| w_norm = np.array([0.11]).astype(np.float32) | |||||
| g_norm = np.array([1.2]).astype(np.float32) | |||||
| lr = np.array([0.012]).astype(np.float32) | |||||
| update = np.array([0.01, 0.03, 0.05]).astype(np.float32) | |||||
| param = np.array([1, 3, 5]).astype(np.float32) | |||||
| expect = get_output(w_norm, g_norm, lr, update, param, False) | |||||
| output = get_output(w_norm, g_norm, lr, update, param, True) | |||||
| assert np.allclose(output.asnumpy(), expect.asnumpy()) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_arm_ascend_training | |||||
| @pytest.mark.platform_x86_ascend_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_lamb_apply_weight_assign_ascend(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| lamb_apply_weight_assign() | |||||