| @@ -29,6 +29,7 @@ from src.config import cifar_cfg, imagenet_cfg | |||
| from src.dataset import create_dataset_cifar10, create_dataset_imagenet | |||
| from src.googlenet import GoogleNet | |||
| from src.CrossEntropySmooth import CrossEntropySmooth | |||
| set_seed(1) | |||
| @@ -43,7 +44,7 @@ if __name__ == '__main__': | |||
| if args_opt.dataset_name == 'cifar10': | |||
| cfg = cifar_cfg | |||
| dataset = create_dataset_cifar10(cfg.data_path, 1, False) | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False) | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||
| net = GoogleNet(num_classes=cfg.num_classes) | |||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum, | |||
| weight_decay=cfg.weight_decay) | |||
| @@ -54,8 +55,8 @@ if __name__ == '__main__': | |||
| dataset = create_dataset_imagenet(cfg.val_data_path, 1, False) | |||
| if not cfg.use_label_smooth: | |||
| cfg.label_smooth_factor = 0.0 | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", | |||
| smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes) | |||
| loss = CrossEntropySmooth(sparse=True, reduction="mean", | |||
| smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes) | |||
| net = GoogleNet(num_classes=cfg.num_classes) | |||
| model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'}) | |||
| @@ -0,0 +1,38 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """define loss function for network""" | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.nn.loss.loss import _Loss | |||
| from mindspore.ops import functional as F | |||
| from mindspore.ops import operations as P | |||
| class CrossEntropySmooth(_Loss): | |||
| """CrossEntropy""" | |||
| def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000): | |||
| super(CrossEntropySmooth, self).__init__() | |||
| self.onehot = P.OneHot() | |||
| self.sparse = sparse | |||
| self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) | |||
| self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) | |||
| self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction) | |||
| def construct(self, logit, label): | |||
| if self.sparse: | |||
| label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) | |||
| loss = self.ce(logit, label) | |||
| return loss | |||
| @@ -36,6 +36,7 @@ from mindspore.common import set_seed | |||
| from src.config import cifar_cfg, imagenet_cfg | |||
| from src.dataset import create_dataset_cifar10, create_dataset_imagenet | |||
| from src.googlenet import GoogleNet | |||
| from src.CrossEntropySmooth import CrossEntropySmooth | |||
| set_seed(1) | |||
| @@ -148,7 +149,7 @@ if __name__ == '__main__': | |||
| learning_rate=Tensor(lr), | |||
| momentum=cfg.momentum, | |||
| weight_decay=cfg.weight_decay) | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False) | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||
| elif args_opt.dataset_name == 'imagenet': | |||
| lr = lr_steps_imagenet(cfg, batch_num) | |||
| @@ -188,8 +189,8 @@ if __name__ == '__main__': | |||
| loss_scale=cfg.loss_scale) | |||
| if not cfg.use_label_smooth: | |||
| cfg.label_smooth_factor = 0.0 | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", | |||
| smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes) | |||
| loss = CrossEntropySmooth(sparse=True, reduction="mean", | |||
| smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes) | |||
| if cfg.is_dynamic_loss_scale == 1: | |||
| loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000) | |||