Browse Source

SoftmaxCrossEntropyWithLogic api adapt

tags/v1.0.0
CaoJian 5 years ago
parent
commit
9bdd4195a4
3 changed files with 46 additions and 6 deletions
  1. +4
    -3
      model_zoo/official/cv/googlenet/eval.py
  2. +38
    -0
      model_zoo/official/cv/googlenet/src/CrossEntropySmooth.py
  3. +4
    -3
      model_zoo/official/cv/googlenet/train.py

+ 4
- 3
model_zoo/official/cv/googlenet/eval.py View File

@@ -29,6 +29,7 @@ from src.config import cifar_cfg, imagenet_cfg
from src.dataset import create_dataset_cifar10, create_dataset_imagenet from src.dataset import create_dataset_cifar10, create_dataset_imagenet


from src.googlenet import GoogleNet from src.googlenet import GoogleNet
from src.CrossEntropySmooth import CrossEntropySmooth


set_seed(1) set_seed(1)


@@ -43,7 +44,7 @@ if __name__ == '__main__':
if args_opt.dataset_name == 'cifar10': if args_opt.dataset_name == 'cifar10':
cfg = cifar_cfg cfg = cifar_cfg
dataset = create_dataset_cifar10(cfg.data_path, 1, False) dataset = create_dataset_cifar10(cfg.data_path, 1, False)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net = GoogleNet(num_classes=cfg.num_classes) net = GoogleNet(num_classes=cfg.num_classes)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum, opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
weight_decay=cfg.weight_decay) weight_decay=cfg.weight_decay)
@@ -54,8 +55,8 @@ if __name__ == '__main__':
dataset = create_dataset_imagenet(cfg.val_data_path, 1, False) dataset = create_dataset_imagenet(cfg.val_data_path, 1, False)
if not cfg.use_label_smooth: if not cfg.use_label_smooth:
cfg.label_smooth_factor = 0.0 cfg.label_smooth_factor = 0.0
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
net = GoogleNet(num_classes=cfg.num_classes) net = GoogleNet(num_classes=cfg.num_classes)
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'}) model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})




+ 38
- 0
model_zoo/official/cv/googlenet/src/CrossEntropySmooth.py View File

@@ -0,0 +1,38 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""define loss function for network"""
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.nn.loss.loss import _Loss
from mindspore.ops import functional as F
from mindspore.ops import operations as P


class CrossEntropySmooth(_Loss):
"""CrossEntropy"""
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
super(CrossEntropySmooth, self).__init__()
self.onehot = P.OneHot()
self.sparse = sparse
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)

def construct(self, logit, label):
if self.sparse:
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
loss = self.ce(logit, label)
return loss

+ 4
- 3
model_zoo/official/cv/googlenet/train.py View File

@@ -36,6 +36,7 @@ from mindspore.common import set_seed
from src.config import cifar_cfg, imagenet_cfg from src.config import cifar_cfg, imagenet_cfg
from src.dataset import create_dataset_cifar10, create_dataset_imagenet from src.dataset import create_dataset_cifar10, create_dataset_imagenet
from src.googlenet import GoogleNet from src.googlenet import GoogleNet
from src.CrossEntropySmooth import CrossEntropySmooth


set_seed(1) set_seed(1)


@@ -148,7 +149,7 @@ if __name__ == '__main__':
learning_rate=Tensor(lr), learning_rate=Tensor(lr),
momentum=cfg.momentum, momentum=cfg.momentum,
weight_decay=cfg.weight_decay) weight_decay=cfg.weight_decay)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')


elif args_opt.dataset_name == 'imagenet': elif args_opt.dataset_name == 'imagenet':
lr = lr_steps_imagenet(cfg, batch_num) lr = lr_steps_imagenet(cfg, batch_num)
@@ -188,8 +189,8 @@ if __name__ == '__main__':
loss_scale=cfg.loss_scale) loss_scale=cfg.loss_scale)
if not cfg.use_label_smooth: if not cfg.use_label_smooth:
cfg.label_smooth_factor = 0.0 cfg.label_smooth_factor = 0.0
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)


if cfg.is_dynamic_loss_scale == 1: if cfg.is_dynamic_loss_scale == 1:
loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000) loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000)


Loading…
Cancel
Save