Merge pull request !248 from peixu_ren/custom_aicputags/v0.6.0-beta
| @@ -26,7 +26,6 @@ from .squeeze import _squeeze_aicpu | |||
| from .expand_dims import _expand_dims_aicpu | |||
| from .random_choice_with_mask import _random_choice_with_mask_aicpu | |||
| from .pack import _pack_aicpu | |||
| from .normal import _normal_aicpu | |||
| from .ctcloss import _ctcloss_aicpu | |||
| from .reverse_sequence import _reverse_sequence_aicpu | |||
| from .crop_and_resize import _crop_and_resize_aicpu | |||
| @@ -34,3 +33,8 @@ from .rnnt_loss import _rnnt_loss_aicpu | |||
| from .random_categorical import _random_categorical_aicpu | |||
| from .cast import _cast_aicpu | |||
| from .mirror_pad import _mirror_pad_aicpu | |||
| from .normal import _normal_aicpu | |||
| from .gamma import _gamma_aicpu | |||
| from .poisson import _poisson_aicpu | |||
| from .uniform_int import _uniform_int_aicpu | |||
| from .uniform_real import _uniform_real_aicpu | |||
| @@ -0,0 +1,33 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """RandomGamma op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| gamma_op_info = AiCPURegOp("Gamma") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "shape", "required") \ | |||
| .input(1, "alpha", "required") \ | |||
| .input(2, "beta", "required") \ | |||
| .output(0, "output", "required") \ | |||
| .attr("seed", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ | |||
| .get_op_info() | |||
| @op_info_register(gamma_op_info) | |||
| def _gamma_aicpu(): | |||
| """RandomGamma AiCPU register""" | |||
| return | |||
| @@ -13,7 +13,7 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Normal op""" | |||
| """RandomNormal op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| normal_op_info = AiCPURegOp("Normal") \ | |||
| @@ -21,7 +21,7 @@ normal_op_info = AiCPURegOp("Normal") \ | |||
| .input(0, "shape", "required") \ | |||
| .input(1, "mean", "required") \ | |||
| .input(2, "stddev", "required") \ | |||
| .output(0, "y", "required") \ | |||
| .output(0, "output", "required") \ | |||
| .attr("seed", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ | |||
| @@ -29,5 +29,5 @@ normal_op_info = AiCPURegOp("Normal") \ | |||
| @op_info_register(normal_op_info) | |||
| def _normal_aicpu(): | |||
| """Normal AiCPU register""" | |||
| """RandomNormal AiCPU register""" | |||
| return | |||
| @@ -0,0 +1,32 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """RandomPoisson op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| poisson_op_info = AiCPURegOp("Poisson") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "shape", "required") \ | |||
| .input(1, "mean", "required") \ | |||
| .output(0, "output", "required") \ | |||
| .attr("seed", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.I32_NCHW) \ | |||
| .get_op_info() | |||
| @op_info_register(poisson_op_info) | |||
| def _poisson_aicpu(): | |||
| """RandomPoisson AiCPU register""" | |||
| return | |||
| @@ -0,0 +1,33 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """RandomUniformInt op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| uniform_int_op_info = AiCPURegOp("UniformInt") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "shape", "required") \ | |||
| .input(1, "a", "required") \ | |||
| .input(2, "b", "required") \ | |||
| .output(0, "output", "required") \ | |||
| .attr("seed", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW) \ | |||
| .get_op_info() | |||
| @op_info_register(uniform_int_op_info) | |||
| def _uniform_int_aicpu(): | |||
| """RandomUniformInt AiCPU register""" | |||
| return | |||
| @@ -0,0 +1,33 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """RandomUniformReal op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| uniform_real_op_info = AiCPURegOp("UniformReal") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "shape", "required") \ | |||
| .input(1, "a", "required") \ | |||
| .input(2, "b", "required") \ | |||
| .output(0, "output", "required") \ | |||
| .attr("seed", "int") \ | |||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ | |||
| .get_op_info() | |||
| @op_info_register(uniform_real_op_info) | |||
| def _uniform_real_aicpu(): | |||
| """RandomUniformReal AiCPU register""" | |||
| return | |||
| @@ -54,7 +54,8 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A | |||
| Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, | |||
| Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps) | |||
| from .random_ops import (RandomChoiceWithMask, Normal, RandomCategorical) | |||
| from .random_ops import (RandomChoiceWithMask, Normal, Gamma, Poisson, UniformInt, UniformReal, | |||
| RandomCategorical) | |||
| from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm, | |||
| BiasAdd, Conv2D, | |||
| DepthwiseConv2dNative, | |||
| @@ -172,6 +173,10 @@ __all__ = [ | |||
| 'Tanh', | |||
| 'RandomChoiceWithMask', | |||
| 'Normal', | |||
| 'Gamma', | |||
| 'Poisson', | |||
| 'UniformInt', | |||
| 'UniformReal', | |||
| 'RandomCategorical', | |||
| 'ResizeBilinear', | |||
| 'ScalarSummary', | |||
| @@ -19,6 +19,269 @@ from ..._checkparam import Validator as validator | |||
| from ..._checkparam import Rel | |||
| from ...common import dtype as mstype | |||
| from ..primitive import PrimitiveWithInfer, prim_attr_register | |||
| from .._utils import get_broadcast_shape | |||
| class Normal(PrimitiveWithInfer): | |||
| r""" | |||
| Generates random numbers according to the Normal (or Gaussian) random number distribution. | |||
| It is defined as: | |||
| .. math:: | |||
| \text{f}(x;μ,σ) = \frac{1}{σ\sqrt{2π}}\exp(-\frac{1}{2}(\frac{x-μ}{σ})^2), | |||
| Args: | |||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| - **mean** (Tensor) - The mean μ distribution parameter, The mean specifies the location of the peak. | |||
| With float32 data type. | |||
| - **stddev** (Tensor) - the deviation σ distribution parameter. With float32 data type. | |||
| Outputs: | |||
| Tensor, has the shape 'shape' input and dtype as float32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> mean = Tensor(1.0, mstype.float32) | |||
| >>> stddev = Tensor(1.0, mstype.float32) | |||
| >>> normal = P.Normal(seed=2) | |||
| >>> output = normal(shape, mean, stddev) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| """Init Normal""" | |||
| self.init_prim_io_names(inputs=['shape', 'mean', 'stddev'], outputs=['output']) | |||
| validator.check_value_type('seed', seed, [int], self.name) | |||
| def __infer__(self, shape, mean, stddev): | |||
| shape_v = shape["value"] | |||
| if shape_v is None: | |||
| raise ValueError(f"For {self.name}, shape must be const.") | |||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||
| for i, shape_i in enumerate(shape_v): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||
| validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name) | |||
| validator.check_tensor_type_same({"stddev": stddev["dtype"]}, [mstype.float32], self.name) | |||
| broadcast_shape = get_broadcast_shape(mean['shape'], stddev['shape'], self.name) | |||
| broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name) | |||
| out = { | |||
| 'shape': broadcast_shape, | |||
| 'dtype': mstype.float32, | |||
| 'value': None} | |||
| return out | |||
| class Gamma(PrimitiveWithInfer): | |||
| r""" | |||
| Produces random positive floating-point values x, distributed according to probability density function: | |||
| .. math:: | |||
| \text{P}(x|α,β) = \frac{\exp(-x/β)}{{β^α}\cdot{\Gamma(α)}}\cdot{x^{α-1}}, | |||
| Args: | |||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| - **alpha** (Tensor) - The α distribution parameter. | |||
| It is also known as the shape parameter. With float32 data type. | |||
| - **beta** (Tensor) - The β distribution parameter. | |||
| It is also known as the scale parameter. With float32 data type. | |||
| Outputs: | |||
| Tensor, has the shape 'shape' input and dtype as float32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> alpha = Tensor(1.0, mstype.float32) | |||
| >>> beta = Tensor(1.0, mstype.float32) | |||
| >>> gamma = P.Gamma(seed=3) | |||
| >>> output = normal(shape, alpha, beta) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| """Init Gamma""" | |||
| self.init_prim_io_names(inputs=['shape', 'alpha', 'beta'], outputs=['output']) | |||
| validator.check_value_type('seed', seed, [int], self.name) | |||
| def __infer__(self, shape, alpha, beta): | |||
| shape_v = shape["value"] | |||
| if shape_v is None: | |||
| raise ValueError(f"For {self.name}, shape must be const.") | |||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||
| for i, shape_i in enumerate(shape_v): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||
| validator.check_tensor_type_same({"alpha": alpha["dtype"]}, [mstype.float32], self.name) | |||
| validator.check_tensor_type_same({"beta": beta["dtype"]}, [mstype.float32], self.name) | |||
| broadcast_shape = get_broadcast_shape(alpha['shape'], beta['shape'], self.name) | |||
| broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name) | |||
| out = { | |||
| 'shape': broadcast_shape, | |||
| 'dtype': mstype.float32, | |||
| 'value': None} | |||
| return out | |||
| class Poisson(PrimitiveWithInfer): | |||
| r""" | |||
| Produces random non-negative integer values i, distributed according to discrete probability function: | |||
| .. math:: | |||
| \text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}, | |||
| Args: | |||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| - **mean** (Tensor) - μ parameter the distribution was constructed with. | |||
| The parameter defines mean number of occurrences of the event. With float32 data type. | |||
| Outputs: | |||
| Tensor, has the shape 'shape' input and dtype as int32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> mean = Tensor(5.0, mstype.float32) | |||
| >>> poisson = P.Poisson(seed=5) | |||
| >>> output = poisson(shape, mean) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| """Init Poisson""" | |||
| self.init_prim_io_names(inputs=['shape', 'mean'], outputs=['output']) | |||
| validator.check_value_type('seed', seed, [int], self.name) | |||
| def __infer__(self, shape, mean): | |||
| shape_v = shape["value"] | |||
| if shape_v is None: | |||
| raise ValueError(f"For {self.name}, shape must be const.") | |||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||
| for i, shape_i in enumerate(shape_v): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||
| validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name) | |||
| broadcast_shape = get_broadcast_shape(mean['shape'], shape_v, self.name) | |||
| out = { | |||
| 'shape': broadcast_shape, | |||
| 'dtype': mstype.int32, | |||
| 'value': None} | |||
| return out | |||
| class UniformInt(PrimitiveWithInfer): | |||
| r""" | |||
| Produces random integer values i, uniformly distributed on the closed interval [a, b], that is, | |||
| distributed according to the discrete probability function: | |||
| .. math:: | |||
| \text{P}(i|a,b) = \frac{1}{b-a+1}, | |||
| Args: | |||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| - **a** (Tensor) - The a distribution parameter. | |||
| It defines the minimum possibly generated value. With int32 data type. | |||
| - **b** (Tensor) - The b distribution parameter. | |||
| It defines the maximum possibly generated value. With int32 data type. | |||
| Outputs: | |||
| Tensor, has the shape 'shape' input and dtype as int32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> a = Tensor(1, mstype.int32) | |||
| >>> b = Tensor(5, mstype.int32) | |||
| >>> uniform_int = P.UniformInt(seed=10) | |||
| >>> output = uniform_int(shape, a, b) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| """Init UniformInt""" | |||
| self.init_prim_io_names(inputs=['shape', 'a', 'b'], outputs=['output']) | |||
| validator.check_value_type('seed', seed, [int], self.name) | |||
| def __infer__(self, shape, a, b): | |||
| shape_v = shape["value"] | |||
| if shape_v is None: | |||
| raise ValueError(f"For {self.name}, shape must be const.") | |||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||
| for i, shape_i in enumerate(shape_v): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||
| validator.check_tensor_type_same({"a": a["dtype"]}, [mstype.int32], self.name) | |||
| validator.check_tensor_type_same({"b": b["dtype"]}, [mstype.int32], self.name) | |||
| broadcast_shape = get_broadcast_shape(a['shape'], b['shape'], self.name) | |||
| broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name) | |||
| out = { | |||
| 'shape': broadcast_shape, | |||
| 'dtype': mstype.int32, | |||
| 'value': None} | |||
| return out | |||
| class UniformReal(PrimitiveWithInfer): | |||
| r""" | |||
| Produces random floating-point values i, uniformly distributed on the interval [a, b), that is,\ | |||
| distributed according to the probability density function: | |||
| .. math:: | |||
| \text{P}(i|a,b) = \frac{1}{b-a}, | |||
| Args: | |||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| - **a** (Tensor) - The a distribution parameter. | |||
| It defines the minimum possibly generated value. With float32 data type. | |||
| - **b** (Tensor) - The b distribution parameter. | |||
| It defines the maximum possibly generated value. With float32 data type. | |||
| Outputs: | |||
| Tensor, has the shape 'shape' input and dtype as int32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> a = Tensor(1.0, mstype.float32) | |||
| >>> b = Tensor(5.0, mstype.float32) | |||
| >>> uniform_real = P.UniformReal(seed=10) | |||
| >>> output = uniform_real(shape, a, b) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| """Init UniformReal""" | |||
| self.init_prim_io_names(inputs=['shape', 'a', 'b'], outputs=['output']) | |||
| validator.check_value_type('seed', seed, [int], self.name) | |||
| def __infer__(self, shape, a, b): | |||
| shape_v = shape["value"] | |||
| if shape_v is None: | |||
| raise ValueError(f"For {self.name}, shape must be const.") | |||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||
| for i, shape_i in enumerate(shape_v): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||
| validator.check_tensor_type_same({"a": a["dtype"]}, [mstype.float32], self.name) | |||
| validator.check_tensor_type_same({"b": b["dtype"]}, [mstype.float32], self.name) | |||
| broadcast_shape = get_broadcast_shape(a['shape'], b['shape'], self.name) | |||
| broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name) | |||
| out = { | |||
| 'shape': broadcast_shape, | |||
| 'dtype': mstype.float32, | |||
| 'value': None} | |||
| return out | |||
| class RandomChoiceWithMask(PrimitiveWithInfer): | |||
| @@ -66,49 +329,6 @@ class RandomChoiceWithMask(PrimitiveWithInfer): | |||
| return (mstype.int32, mstype.bool_) | |||
| class Normal(PrimitiveWithInfer): | |||
| """ | |||
| Generates random samples from a normal(Gaussian) distribution. | |||
| Args: | |||
| seed (int): Random seed. Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple[int]) - The shape of output tensor. Only constant value is allowed. | |||
| - **mean** (Tensor) - The mean of the distribution, with float32 data type. | |||
| - **stddev** (Tensor) - The standard deviation of the distribution, with float32 data type. | |||
| Outputs: | |||
| Tensor, with the given shape from the specific distribution and float32 data type. | |||
| Examples: | |||
| >>> normal = P.Normal() | |||
| >>> mean = Tensor(0., mstype.float32) | |||
| >>> stddev = Tensor(1., mstype.float32) | |||
| >>> out = normal((32, 3, 3), mean, stddev) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| """Init Normal""" | |||
| validator.check_value_type("seed", seed, [int], self.name) | |||
| def __infer__(self, shape, mean, stddev): | |||
| shape_value = shape["value"] | |||
| if shape_value is None: | |||
| raise ValueError(f"For {self.name}, shape must be const.") | |||
| validator.check_value_type("shape", shape_value, [tuple], self.name) | |||
| for i, shape_i in enumerate(shape_value): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GE, self.name) | |||
| validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name) | |||
| validator.check_tensor_type_same({"stddev": stddev["dtype"]}, [mstype.float32], self.name) | |||
| out = {"shape": shape_value, | |||
| "dtype": mstype.float32, | |||
| "value": None} | |||
| return out | |||
| class RandomCategorical(PrimitiveWithInfer): | |||
| """ | |||
| Generates random samples from a given categorical distribution tensor. | |||
| @@ -0,0 +1,58 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common import dtype as mstype | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape, seed=0): | |||
| super(Net, self).__init__() | |||
| self.gamma = P.Gamma(seed=seed) | |||
| self.shape = shape | |||
| def construct(self, alpha, beta): | |||
| return self.gamma(self.shape, alpha, beta) | |||
| def test_net_1D(): | |||
| seed = 10 | |||
| shape = (3, 2, 4) | |||
| alpha = 1.0 | |||
| beta = 1.0 | |||
| net = Net(shape, seed) | |||
| talpha, tbeta = Tensor(alpha, mstype.float32), Tensor(beta, mstype.float32) | |||
| output = net(talpha, tbeta) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 4) | |||
| def test_net_ND(): | |||
| seed = 10 | |||
| shape = (3, 1, 2) | |||
| alpha = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32) | |||
| beta = np.array([1.0]).astype(np.float32) | |||
| net = Net(shape, seed) | |||
| talpha, tbeta = Tensor(alpha), Tensor(beta) | |||
| output = net(talpha, tbeta) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 2) | |||
| @@ -12,32 +12,46 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0): | |||
| def __init__(self, shape, seed=0): | |||
| super(Net, self).__init__() | |||
| self._mean = Tensor(mean, mstype.float32) | |||
| self._stddev = Tensor(stddev, mstype.float32) | |||
| self._normal = P.Normal(seed=seed) | |||
| self._shape = shape | |||
| self.normal = P.Normal(seed=seed) | |||
| self.shape = shape | |||
| def construct(self): | |||
| return self._normal(self._shape, self._mean, self._stddev) | |||
| def construct(self, mean, stddev): | |||
| return self.normal(self.shape, mean, stddev) | |||
| def test_net_3x2x4(): | |||
| mean = 0.0 | |||
| def test_net_1D(): | |||
| seed = 10 | |||
| shape = (3, 2, 4) | |||
| mean = 1.0 | |||
| stddev = 1.0 | |||
| seed = 0 | |||
| net = Net((3, 2, 4), mean, stddev, seed) | |||
| out = net() | |||
| assert out.shape == (3, 2, 4) | |||
| net = Net(shape, seed) | |||
| tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32) | |||
| output = net(tmean, tstddev) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 4) | |||
| def test_net_ND(): | |||
| seed = 10 | |||
| shape = (3, 1, 2) | |||
| mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32) | |||
| stddev = np.array([1.0]).astype(np.float32) | |||
| net = Net(shape, seed) | |||
| tmean, tstddev = Tensor(mean), Tensor(stddev) | |||
| output = net(tmean, tstddev) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 2) | |||
| @@ -0,0 +1,53 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common import dtype as mstype | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape): | |||
| super(Net, self).__init__() | |||
| self.poisson = P.Poisson() | |||
| self.shape = shape | |||
| def construct(self, mean): | |||
| return self.poisson(self.shape, mean) | |||
| def test_net_1(): | |||
| shape = (2, 16) | |||
| mean = np.array([5.0]).astype(np.float32) | |||
| net = Net(shape) | |||
| tmean = Tensor(mean) | |||
| output = net(tmean) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (2, 16) | |||
| def test_net_2(): | |||
| shape = (4, 1) | |||
| mean = np.array([5.0, 10.0]).astype(np.float32) | |||
| net = Net(shape) | |||
| tmean = Tensor(mean) | |||
| output = net(tmean) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (4, 2) | |||
| @@ -0,0 +1,57 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common import dtype as mstype | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape, seed=0): | |||
| super(Net, self).__init__() | |||
| self.uniformint = P.UniformInt(seed=seed) | |||
| self.shape = shape | |||
| def construct(self, a, b): | |||
| return self.uniformint(self.shape, a, b) | |||
| def test_net_1D(): | |||
| seed = 10 | |||
| shape = (3, 2, 4) | |||
| a = 1 | |||
| b = 5 | |||
| net = Net(shape, seed) | |||
| ta, tb = Tensor(a, mstype.int32), Tensor(b, mstype.int32) | |||
| output = net(ta, tb) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 4) | |||
| def test_net_ND(): | |||
| seed = 10 | |||
| shape = (3, 2, 1) | |||
| a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.int32) | |||
| b = np.array([10]).astype(np.int32) | |||
| net = Net(shape, seed) | |||
| ta, tb = Tensor(a), Tensor(b) | |||
| output = net(ta, tb) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 2) | |||
| @@ -0,0 +1,57 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common import dtype as mstype | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape, seed=0): | |||
| super(Net, self).__init__() | |||
| self.uniformreal = P.UniformReal(seed=seed) | |||
| self.shape = shape | |||
| def construct(self, a, b): | |||
| return self.uniformreal(self.shape, a, b) | |||
| def test_net_1D(): | |||
| seed = 10 | |||
| shape = (3, 2, 4) | |||
| a = 1.0 | |||
| b = 5.0 | |||
| net = Net(shape, seed) | |||
| ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32) | |||
| output = net(ta, tb) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 4) | |||
| def test_net_ND(): | |||
| seed = 10 | |||
| shape = (3, 2, 1) | |||
| a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.float32) | |||
| b = np.array([10]).astype(np.float32) | |||
| net = Net(shape, seed) | |||
| ta, tb = Tensor(a), Tensor(b) | |||
| output = net(ta, tb) | |||
| print(output.asnumpy()) | |||
| assert output.shape == (3, 2, 2) | |||
| @@ -400,15 +400,57 @@ class InplaceSubNet(nn.Cell): | |||
| class NormalNet(nn.Cell): | |||
| def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0): | |||
| def __init__(self, shape=None, seed=0): | |||
| super(NormalNet, self).__init__() | |||
| self.normal = P.Normal(seed=seed) | |||
| self.shape = shape | |||
| self.mean = Tensor(mean, mstype.float32) | |||
| self.stddev = Tensor(stddev, mstype.float32) | |||
| def construct(self): | |||
| out = self.normal(self.shape, self.mean, self.stddev) | |||
| def construct(self, mean, stddev): | |||
| out = self.normal(self.shape, mean, stddev) | |||
| return out | |||
| class GammaNet(nn.Cell): | |||
| def __init__(self, shape=None, seed=0): | |||
| super(GammaNet, self).__init__() | |||
| self.gamma = P.Gamma(seed=seed) | |||
| self.shape = shape | |||
| def construct(self, alpha, beta): | |||
| out = self.gamma(self.shape, alpha, beta) | |||
| return out | |||
| class PoissonNet(nn.Cell): | |||
| def __init__(self, shape=None, seed=0): | |||
| super(PoissonNet, self).__init__() | |||
| self.poisson = P.Poisson(seed=seed) | |||
| self.shape = shape | |||
| def construct(self, mean): | |||
| out = self.poisson(self.shape, mean) | |||
| return out | |||
| class UniformIntNet(nn.Cell): | |||
| def __init__(self, shape=None, seed=0): | |||
| super(UniformIntNet, self).__init__() | |||
| self.uniformint = P.UniformInt(seed=seed) | |||
| self.shape = shape | |||
| def construct(self, a, b): | |||
| out = self.uniformint(self.shape, a, b) | |||
| return out | |||
| class UniformRealNet(nn.Cell): | |||
| def __init__(self, shape=None, seed=0): | |||
| super(UniformRealNet, self).__init__() | |||
| self.uniformreal = P.UniformReal(seed=seed) | |||
| self.shape = shape | |||
| def construct(self, a, b): | |||
| out = self.uniformreal(self.shape, a, b) | |||
| return out | |||
| @@ -620,6 +662,26 @@ test_case_math_ops = [ | |||
| (1, 1, 1)], | |||
| 'desc_inputs': [[64, 128, 1024]], | |||
| 'skip': ['backward']}), | |||
| ('Normal', { | |||
| 'block': NormalNet((3, 2, 4), 0), | |||
| 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('Gamma', { | |||
| 'block': GammaNet((3, 2, 4), 0), | |||
| 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('Poisson', { | |||
| 'block': PoissonNet((3, 2, 4), 0), | |||
| 'desc_inputs': [Tensor(2.0, mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('UniformInt', { | |||
| 'block': UniformIntNet((3, 2, 4), 0), | |||
| 'desc_inputs': [Tensor(1, mstype.int32), Tensor(15, mstype.int32)], | |||
| 'skip': ['backward']}), | |||
| ('UniformReal', { | |||
| 'block': UniformRealNet((3, 2, 4), 0), | |||
| 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(5.0, mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('RandomChoiceWithMask', { | |||
| 'block': P.RandomChoiceWithMask(256), | |||
| 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))], | |||
| @@ -908,10 +970,6 @@ test_case_math_ops = [ | |||
| 'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)], | |||
| 'desc_bprop': [], | |||
| 'skip': ['backward']}), | |||
| ('Normal', { | |||
| 'block': NormalNet((3, 2, 4), 0.0, 1.0, 0), | |||
| 'desc_inputs': [], | |||
| 'skip': ['backward']}), | |||
| ] | |||
| test_case_nn_ops = [ | |||