Merge pull request !248 from peixu_ren/custom_aicputags/v0.6.0-beta
| @@ -26,7 +26,6 @@ from .squeeze import _squeeze_aicpu | |||||
| from .expand_dims import _expand_dims_aicpu | from .expand_dims import _expand_dims_aicpu | ||||
| from .random_choice_with_mask import _random_choice_with_mask_aicpu | from .random_choice_with_mask import _random_choice_with_mask_aicpu | ||||
| from .pack import _pack_aicpu | from .pack import _pack_aicpu | ||||
| from .normal import _normal_aicpu | |||||
| from .ctcloss import _ctcloss_aicpu | from .ctcloss import _ctcloss_aicpu | ||||
| from .reverse_sequence import _reverse_sequence_aicpu | from .reverse_sequence import _reverse_sequence_aicpu | ||||
| from .crop_and_resize import _crop_and_resize_aicpu | from .crop_and_resize import _crop_and_resize_aicpu | ||||
| @@ -34,3 +33,8 @@ from .rnnt_loss import _rnnt_loss_aicpu | |||||
| from .random_categorical import _random_categorical_aicpu | from .random_categorical import _random_categorical_aicpu | ||||
| from .cast import _cast_aicpu | from .cast import _cast_aicpu | ||||
| from .mirror_pad import _mirror_pad_aicpu | from .mirror_pad import _mirror_pad_aicpu | ||||
| from .normal import _normal_aicpu | |||||
| from .gamma import _gamma_aicpu | |||||
| from .poisson import _poisson_aicpu | |||||
| from .uniform_int import _uniform_int_aicpu | |||||
| from .uniform_real import _uniform_real_aicpu | |||||
| @@ -0,0 +1,33 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """RandomGamma op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||||
| gamma_op_info = AiCPURegOp("Gamma") \ | |||||
| .fusion_type("OPAQUE") \ | |||||
| .input(0, "shape", "required") \ | |||||
| .input(1, "alpha", "required") \ | |||||
| .input(2, "beta", "required") \ | |||||
| .output(0, "output", "required") \ | |||||
| .attr("seed", "int") \ | |||||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ | |||||
| .get_op_info() | |||||
| @op_info_register(gamma_op_info) | |||||
| def _gamma_aicpu(): | |||||
| """RandomGamma AiCPU register""" | |||||
| return | |||||
| @@ -13,7 +13,7 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| """Normal op""" | |||||
| """RandomNormal op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | ||||
| normal_op_info = AiCPURegOp("Normal") \ | normal_op_info = AiCPURegOp("Normal") \ | ||||
| @@ -21,7 +21,7 @@ normal_op_info = AiCPURegOp("Normal") \ | |||||
| .input(0, "shape", "required") \ | .input(0, "shape", "required") \ | ||||
| .input(1, "mean", "required") \ | .input(1, "mean", "required") \ | ||||
| .input(2, "stddev", "required") \ | .input(2, "stddev", "required") \ | ||||
| .output(0, "y", "required") \ | |||||
| .output(0, "output", "required") \ | |||||
| .attr("seed", "int") \ | .attr("seed", "int") \ | ||||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | ||||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ | .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ | ||||
| @@ -29,5 +29,5 @@ normal_op_info = AiCPURegOp("Normal") \ | |||||
| @op_info_register(normal_op_info) | @op_info_register(normal_op_info) | ||||
| def _normal_aicpu(): | def _normal_aicpu(): | ||||
| """Normal AiCPU register""" | |||||
| """RandomNormal AiCPU register""" | |||||
| return | return | ||||
| @@ -0,0 +1,32 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """RandomPoisson op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||||
| poisson_op_info = AiCPURegOp("Poisson") \ | |||||
| .fusion_type("OPAQUE") \ | |||||
| .input(0, "shape", "required") \ | |||||
| .input(1, "mean", "required") \ | |||||
| .output(0, "output", "required") \ | |||||
| .attr("seed", "int") \ | |||||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.I32_NCHW) \ | |||||
| .get_op_info() | |||||
| @op_info_register(poisson_op_info) | |||||
| def _poisson_aicpu(): | |||||
| """RandomPoisson AiCPU register""" | |||||
| return | |||||
| @@ -0,0 +1,33 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """RandomUniformInt op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||||
| uniform_int_op_info = AiCPURegOp("UniformInt") \ | |||||
| .fusion_type("OPAQUE") \ | |||||
| .input(0, "shape", "required") \ | |||||
| .input(1, "a", "required") \ | |||||
| .input(2, "b", "required") \ | |||||
| .output(0, "output", "required") \ | |||||
| .attr("seed", "int") \ | |||||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.F32_Default) \ | |||||
| .dtype_format(DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW) \ | |||||
| .get_op_info() | |||||
| @op_info_register(uniform_int_op_info) | |||||
| def _uniform_int_aicpu(): | |||||
| """RandomUniformInt AiCPU register""" | |||||
| return | |||||
| @@ -0,0 +1,33 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """RandomUniformReal op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||||
| uniform_real_op_info = AiCPURegOp("UniformReal") \ | |||||
| .fusion_type("OPAQUE") \ | |||||
| .input(0, "shape", "required") \ | |||||
| .input(1, "a", "required") \ | |||||
| .input(2, "b", "required") \ | |||||
| .output(0, "output", "required") \ | |||||
| .attr("seed", "int") \ | |||||
| .dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ | |||||
| .dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ | |||||
| .get_op_info() | |||||
| @op_info_register(uniform_real_op_info) | |||||
| def _uniform_real_aicpu(): | |||||
| """RandomUniformReal AiCPU register""" | |||||
| return | |||||
| @@ -54,7 +54,8 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A | |||||
| Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, | Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, | ||||
| Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps) | Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps) | ||||
| from .random_ops import (RandomChoiceWithMask, Normal, RandomCategorical) | |||||
| from .random_ops import (RandomChoiceWithMask, Normal, Gamma, Poisson, UniformInt, UniformReal, | |||||
| RandomCategorical) | |||||
| from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm, | from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm, | ||||
| BiasAdd, Conv2D, | BiasAdd, Conv2D, | ||||
| DepthwiseConv2dNative, | DepthwiseConv2dNative, | ||||
| @@ -172,6 +173,10 @@ __all__ = [ | |||||
| 'Tanh', | 'Tanh', | ||||
| 'RandomChoiceWithMask', | 'RandomChoiceWithMask', | ||||
| 'Normal', | 'Normal', | ||||
| 'Gamma', | |||||
| 'Poisson', | |||||
| 'UniformInt', | |||||
| 'UniformReal', | |||||
| 'RandomCategorical', | 'RandomCategorical', | ||||
| 'ResizeBilinear', | 'ResizeBilinear', | ||||
| 'ScalarSummary', | 'ScalarSummary', | ||||
| @@ -19,6 +19,269 @@ from ..._checkparam import Validator as validator | |||||
| from ..._checkparam import Rel | from ..._checkparam import Rel | ||||
| from ...common import dtype as mstype | from ...common import dtype as mstype | ||||
| from ..primitive import PrimitiveWithInfer, prim_attr_register | from ..primitive import PrimitiveWithInfer, prim_attr_register | ||||
| from .._utils import get_broadcast_shape | |||||
| class Normal(PrimitiveWithInfer): | |||||
| r""" | |||||
| Generates random numbers according to the Normal (or Gaussian) random number distribution. | |||||
| It is defined as: | |||||
| .. math:: | |||||
| \text{f}(x;μ,σ) = \frac{1}{σ\sqrt{2π}}\exp(-\frac{1}{2}(\frac{x-μ}{σ})^2), | |||||
| Args: | |||||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||||
| Default: 0. | |||||
| Inputs: | |||||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||||
| - **mean** (Tensor) - The mean μ distribution parameter, The mean specifies the location of the peak. | |||||
| With float32 data type. | |||||
| - **stddev** (Tensor) - the deviation σ distribution parameter. With float32 data type. | |||||
| Outputs: | |||||
| Tensor, has the shape 'shape' input and dtype as float32. | |||||
| Examples: | |||||
| >>> shape = (4, 16) | |||||
| >>> mean = Tensor(1.0, mstype.float32) | |||||
| >>> stddev = Tensor(1.0, mstype.float32) | |||||
| >>> normal = P.Normal(seed=2) | |||||
| >>> output = normal(shape, mean, stddev) | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self, seed=0): | |||||
| """Init Normal""" | |||||
| self.init_prim_io_names(inputs=['shape', 'mean', 'stddev'], outputs=['output']) | |||||
| validator.check_value_type('seed', seed, [int], self.name) | |||||
| def __infer__(self, shape, mean, stddev): | |||||
| shape_v = shape["value"] | |||||
| if shape_v is None: | |||||
| raise ValueError(f"For {self.name}, shape must be const.") | |||||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||||
| for i, shape_i in enumerate(shape_v): | |||||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||||
| validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name) | |||||
| validator.check_tensor_type_same({"stddev": stddev["dtype"]}, [mstype.float32], self.name) | |||||
| broadcast_shape = get_broadcast_shape(mean['shape'], stddev['shape'], self.name) | |||||
| broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name) | |||||
| out = { | |||||
| 'shape': broadcast_shape, | |||||
| 'dtype': mstype.float32, | |||||
| 'value': None} | |||||
| return out | |||||
| class Gamma(PrimitiveWithInfer): | |||||
| r""" | |||||
| Produces random positive floating-point values x, distributed according to probability density function: | |||||
| .. math:: | |||||
| \text{P}(x|α,β) = \frac{\exp(-x/β)}{{β^α}\cdot{\Gamma(α)}}\cdot{x^{α-1}}, | |||||
| Args: | |||||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||||
| Default: 0. | |||||
| Inputs: | |||||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||||
| - **alpha** (Tensor) - The α distribution parameter. | |||||
| It is also known as the shape parameter. With float32 data type. | |||||
| - **beta** (Tensor) - The β distribution parameter. | |||||
| It is also known as the scale parameter. With float32 data type. | |||||
| Outputs: | |||||
| Tensor, has the shape 'shape' input and dtype as float32. | |||||
| Examples: | |||||
| >>> shape = (4, 16) | |||||
| >>> alpha = Tensor(1.0, mstype.float32) | |||||
| >>> beta = Tensor(1.0, mstype.float32) | |||||
| >>> gamma = P.Gamma(seed=3) | |||||
| >>> output = normal(shape, alpha, beta) | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self, seed=0): | |||||
| """Init Gamma""" | |||||
| self.init_prim_io_names(inputs=['shape', 'alpha', 'beta'], outputs=['output']) | |||||
| validator.check_value_type('seed', seed, [int], self.name) | |||||
| def __infer__(self, shape, alpha, beta): | |||||
| shape_v = shape["value"] | |||||
| if shape_v is None: | |||||
| raise ValueError(f"For {self.name}, shape must be const.") | |||||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||||
| for i, shape_i in enumerate(shape_v): | |||||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||||
| validator.check_tensor_type_same({"alpha": alpha["dtype"]}, [mstype.float32], self.name) | |||||
| validator.check_tensor_type_same({"beta": beta["dtype"]}, [mstype.float32], self.name) | |||||
| broadcast_shape = get_broadcast_shape(alpha['shape'], beta['shape'], self.name) | |||||
| broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name) | |||||
| out = { | |||||
| 'shape': broadcast_shape, | |||||
| 'dtype': mstype.float32, | |||||
| 'value': None} | |||||
| return out | |||||
| class Poisson(PrimitiveWithInfer): | |||||
| r""" | |||||
| Produces random non-negative integer values i, distributed according to discrete probability function: | |||||
| .. math:: | |||||
| \text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}, | |||||
| Args: | |||||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||||
| Default: 0. | |||||
| Inputs: | |||||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||||
| - **mean** (Tensor) - μ parameter the distribution was constructed with. | |||||
| The parameter defines mean number of occurrences of the event. With float32 data type. | |||||
| Outputs: | |||||
| Tensor, has the shape 'shape' input and dtype as int32. | |||||
| Examples: | |||||
| >>> shape = (4, 16) | |||||
| >>> mean = Tensor(5.0, mstype.float32) | |||||
| >>> poisson = P.Poisson(seed=5) | |||||
| >>> output = poisson(shape, mean) | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self, seed=0): | |||||
| """Init Poisson""" | |||||
| self.init_prim_io_names(inputs=['shape', 'mean'], outputs=['output']) | |||||
| validator.check_value_type('seed', seed, [int], self.name) | |||||
| def __infer__(self, shape, mean): | |||||
| shape_v = shape["value"] | |||||
| if shape_v is None: | |||||
| raise ValueError(f"For {self.name}, shape must be const.") | |||||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||||
| for i, shape_i in enumerate(shape_v): | |||||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||||
| validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name) | |||||
| broadcast_shape = get_broadcast_shape(mean['shape'], shape_v, self.name) | |||||
| out = { | |||||
| 'shape': broadcast_shape, | |||||
| 'dtype': mstype.int32, | |||||
| 'value': None} | |||||
| return out | |||||
| class UniformInt(PrimitiveWithInfer): | |||||
| r""" | |||||
| Produces random integer values i, uniformly distributed on the closed interval [a, b], that is, | |||||
| distributed according to the discrete probability function: | |||||
| .. math:: | |||||
| \text{P}(i|a,b) = \frac{1}{b-a+1}, | |||||
| Args: | |||||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||||
| Default: 0. | |||||
| Inputs: | |||||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||||
| - **a** (Tensor) - The a distribution parameter. | |||||
| It defines the minimum possibly generated value. With int32 data type. | |||||
| - **b** (Tensor) - The b distribution parameter. | |||||
| It defines the maximum possibly generated value. With int32 data type. | |||||
| Outputs: | |||||
| Tensor, has the shape 'shape' input and dtype as int32. | |||||
| Examples: | |||||
| >>> shape = (4, 16) | |||||
| >>> a = Tensor(1, mstype.int32) | |||||
| >>> b = Tensor(5, mstype.int32) | |||||
| >>> uniform_int = P.UniformInt(seed=10) | |||||
| >>> output = uniform_int(shape, a, b) | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self, seed=0): | |||||
| """Init UniformInt""" | |||||
| self.init_prim_io_names(inputs=['shape', 'a', 'b'], outputs=['output']) | |||||
| validator.check_value_type('seed', seed, [int], self.name) | |||||
| def __infer__(self, shape, a, b): | |||||
| shape_v = shape["value"] | |||||
| if shape_v is None: | |||||
| raise ValueError(f"For {self.name}, shape must be const.") | |||||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||||
| for i, shape_i in enumerate(shape_v): | |||||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||||
| validator.check_tensor_type_same({"a": a["dtype"]}, [mstype.int32], self.name) | |||||
| validator.check_tensor_type_same({"b": b["dtype"]}, [mstype.int32], self.name) | |||||
| broadcast_shape = get_broadcast_shape(a['shape'], b['shape'], self.name) | |||||
| broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name) | |||||
| out = { | |||||
| 'shape': broadcast_shape, | |||||
| 'dtype': mstype.int32, | |||||
| 'value': None} | |||||
| return out | |||||
| class UniformReal(PrimitiveWithInfer): | |||||
| r""" | |||||
| Produces random floating-point values i, uniformly distributed on the interval [a, b), that is,\ | |||||
| distributed according to the probability density function: | |||||
| .. math:: | |||||
| \text{P}(i|a,b) = \frac{1}{b-a}, | |||||
| Args: | |||||
| seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers. | |||||
| Default: 0. | |||||
| Inputs: | |||||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||||
| - **a** (Tensor) - The a distribution parameter. | |||||
| It defines the minimum possibly generated value. With float32 data type. | |||||
| - **b** (Tensor) - The b distribution parameter. | |||||
| It defines the maximum possibly generated value. With float32 data type. | |||||
| Outputs: | |||||
| Tensor, has the shape 'shape' input and dtype as int32. | |||||
| Examples: | |||||
| >>> shape = (4, 16) | |||||
| >>> a = Tensor(1.0, mstype.float32) | |||||
| >>> b = Tensor(5.0, mstype.float32) | |||||
| >>> uniform_real = P.UniformReal(seed=10) | |||||
| >>> output = uniform_real(shape, a, b) | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self, seed=0): | |||||
| """Init UniformReal""" | |||||
| self.init_prim_io_names(inputs=['shape', 'a', 'b'], outputs=['output']) | |||||
| validator.check_value_type('seed', seed, [int], self.name) | |||||
| def __infer__(self, shape, a, b): | |||||
| shape_v = shape["value"] | |||||
| if shape_v is None: | |||||
| raise ValueError(f"For {self.name}, shape must be const.") | |||||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||||
| for i, shape_i in enumerate(shape_v): | |||||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||||
| validator.check_tensor_type_same({"a": a["dtype"]}, [mstype.float32], self.name) | |||||
| validator.check_tensor_type_same({"b": b["dtype"]}, [mstype.float32], self.name) | |||||
| broadcast_shape = get_broadcast_shape(a['shape'], b['shape'], self.name) | |||||
| broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name) | |||||
| out = { | |||||
| 'shape': broadcast_shape, | |||||
| 'dtype': mstype.float32, | |||||
| 'value': None} | |||||
| return out | |||||
| class RandomChoiceWithMask(PrimitiveWithInfer): | class RandomChoiceWithMask(PrimitiveWithInfer): | ||||
| @@ -66,49 +329,6 @@ class RandomChoiceWithMask(PrimitiveWithInfer): | |||||
| return (mstype.int32, mstype.bool_) | return (mstype.int32, mstype.bool_) | ||||
| class Normal(PrimitiveWithInfer): | |||||
| """ | |||||
| Generates random samples from a normal(Gaussian) distribution. | |||||
| Args: | |||||
| seed (int): Random seed. Default: 0. | |||||
| Inputs: | |||||
| - **shape** (tuple[int]) - The shape of output tensor. Only constant value is allowed. | |||||
| - **mean** (Tensor) - The mean of the distribution, with float32 data type. | |||||
| - **stddev** (Tensor) - The standard deviation of the distribution, with float32 data type. | |||||
| Outputs: | |||||
| Tensor, with the given shape from the specific distribution and float32 data type. | |||||
| Examples: | |||||
| >>> normal = P.Normal() | |||||
| >>> mean = Tensor(0., mstype.float32) | |||||
| >>> stddev = Tensor(1., mstype.float32) | |||||
| >>> out = normal((32, 3, 3), mean, stddev) | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self, seed=0): | |||||
| """Init Normal""" | |||||
| validator.check_value_type("seed", seed, [int], self.name) | |||||
| def __infer__(self, shape, mean, stddev): | |||||
| shape_value = shape["value"] | |||||
| if shape_value is None: | |||||
| raise ValueError(f"For {self.name}, shape must be const.") | |||||
| validator.check_value_type("shape", shape_value, [tuple], self.name) | |||||
| for i, shape_i in enumerate(shape_value): | |||||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GE, self.name) | |||||
| validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name) | |||||
| validator.check_tensor_type_same({"stddev": stddev["dtype"]}, [mstype.float32], self.name) | |||||
| out = {"shape": shape_value, | |||||
| "dtype": mstype.float32, | |||||
| "value": None} | |||||
| return out | |||||
| class RandomCategorical(PrimitiveWithInfer): | class RandomCategorical(PrimitiveWithInfer): | ||||
| """ | """ | ||||
| Generates random samples from a given categorical distribution tensor. | Generates random samples from a given categorical distribution tensor. | ||||
| @@ -0,0 +1,58 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.common import dtype as mstype | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, shape, seed=0): | |||||
| super(Net, self).__init__() | |||||
| self.gamma = P.Gamma(seed=seed) | |||||
| self.shape = shape | |||||
| def construct(self, alpha, beta): | |||||
| return self.gamma(self.shape, alpha, beta) | |||||
| def test_net_1D(): | |||||
| seed = 10 | |||||
| shape = (3, 2, 4) | |||||
| alpha = 1.0 | |||||
| beta = 1.0 | |||||
| net = Net(shape, seed) | |||||
| talpha, tbeta = Tensor(alpha, mstype.float32), Tensor(beta, mstype.float32) | |||||
| output = net(talpha, tbeta) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (3, 2, 4) | |||||
| def test_net_ND(): | |||||
| seed = 10 | |||||
| shape = (3, 1, 2) | |||||
| alpha = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32) | |||||
| beta = np.array([1.0]).astype(np.float32) | |||||
| net = Net(shape, seed) | |||||
| talpha, tbeta = Tensor(alpha), Tensor(beta) | |||||
| output = net(talpha, tbeta) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (3, 2, 2) | |||||
| @@ -12,32 +12,46 @@ | |||||
| # See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| import numpy as np | |||||
| import mindspore.context as context | import mindspore.context as context | ||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.common import Tensor | |||||
| from mindspore.common import dtype as mstype | from mindspore.common import dtype as mstype | ||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| class Net(nn.Cell): | class Net(nn.Cell): | ||||
| def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0): | |||||
| def __init__(self, shape, seed=0): | |||||
| super(Net, self).__init__() | super(Net, self).__init__() | ||||
| self._mean = Tensor(mean, mstype.float32) | |||||
| self._stddev = Tensor(stddev, mstype.float32) | |||||
| self._normal = P.Normal(seed=seed) | |||||
| self._shape = shape | |||||
| self.normal = P.Normal(seed=seed) | |||||
| self.shape = shape | |||||
| def construct(self): | |||||
| return self._normal(self._shape, self._mean, self._stddev) | |||||
| def construct(self, mean, stddev): | |||||
| return self.normal(self.shape, mean, stddev) | |||||
| def test_net_3x2x4(): | |||||
| mean = 0.0 | |||||
| def test_net_1D(): | |||||
| seed = 10 | |||||
| shape = (3, 2, 4) | |||||
| mean = 1.0 | |||||
| stddev = 1.0 | stddev = 1.0 | ||||
| seed = 0 | |||||
| net = Net((3, 2, 4), mean, stddev, seed) | |||||
| out = net() | |||||
| assert out.shape == (3, 2, 4) | |||||
| net = Net(shape, seed) | |||||
| tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32) | |||||
| output = net(tmean, tstddev) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (3, 2, 4) | |||||
| def test_net_ND(): | |||||
| seed = 10 | |||||
| shape = (3, 1, 2) | |||||
| mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32) | |||||
| stddev = np.array([1.0]).astype(np.float32) | |||||
| net = Net(shape, seed) | |||||
| tmean, tstddev = Tensor(mean), Tensor(stddev) | |||||
| output = net(tmean, tstddev) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (3, 2, 2) | |||||
| @@ -0,0 +1,53 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.common import dtype as mstype | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, shape): | |||||
| super(Net, self).__init__() | |||||
| self.poisson = P.Poisson() | |||||
| self.shape = shape | |||||
| def construct(self, mean): | |||||
| return self.poisson(self.shape, mean) | |||||
| def test_net_1(): | |||||
| shape = (2, 16) | |||||
| mean = np.array([5.0]).astype(np.float32) | |||||
| net = Net(shape) | |||||
| tmean = Tensor(mean) | |||||
| output = net(tmean) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (2, 16) | |||||
| def test_net_2(): | |||||
| shape = (4, 1) | |||||
| mean = np.array([5.0, 10.0]).astype(np.float32) | |||||
| net = Net(shape) | |||||
| tmean = Tensor(mean) | |||||
| output = net(tmean) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (4, 2) | |||||
| @@ -0,0 +1,57 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.common import dtype as mstype | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, shape, seed=0): | |||||
| super(Net, self).__init__() | |||||
| self.uniformint = P.UniformInt(seed=seed) | |||||
| self.shape = shape | |||||
| def construct(self, a, b): | |||||
| return self.uniformint(self.shape, a, b) | |||||
| def test_net_1D(): | |||||
| seed = 10 | |||||
| shape = (3, 2, 4) | |||||
| a = 1 | |||||
| b = 5 | |||||
| net = Net(shape, seed) | |||||
| ta, tb = Tensor(a, mstype.int32), Tensor(b, mstype.int32) | |||||
| output = net(ta, tb) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (3, 2, 4) | |||||
| def test_net_ND(): | |||||
| seed = 10 | |||||
| shape = (3, 2, 1) | |||||
| a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.int32) | |||||
| b = np.array([10]).astype(np.int32) | |||||
| net = Net(shape, seed) | |||||
| ta, tb = Tensor(a), Tensor(b) | |||||
| output = net(ta, tb) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (3, 2, 2) | |||||
| @@ -0,0 +1,57 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.common import dtype as mstype | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, shape, seed=0): | |||||
| super(Net, self).__init__() | |||||
| self.uniformreal = P.UniformReal(seed=seed) | |||||
| self.shape = shape | |||||
| def construct(self, a, b): | |||||
| return self.uniformreal(self.shape, a, b) | |||||
| def test_net_1D(): | |||||
| seed = 10 | |||||
| shape = (3, 2, 4) | |||||
| a = 1.0 | |||||
| b = 5.0 | |||||
| net = Net(shape, seed) | |||||
| ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32) | |||||
| output = net(ta, tb) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (3, 2, 4) | |||||
| def test_net_ND(): | |||||
| seed = 10 | |||||
| shape = (3, 2, 1) | |||||
| a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.float32) | |||||
| b = np.array([10]).astype(np.float32) | |||||
| net = Net(shape, seed) | |||||
| ta, tb = Tensor(a), Tensor(b) | |||||
| output = net(ta, tb) | |||||
| print(output.asnumpy()) | |||||
| assert output.shape == (3, 2, 2) | |||||
| @@ -400,15 +400,57 @@ class InplaceSubNet(nn.Cell): | |||||
| class NormalNet(nn.Cell): | class NormalNet(nn.Cell): | ||||
| def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0): | |||||
| def __init__(self, shape=None, seed=0): | |||||
| super(NormalNet, self).__init__() | super(NormalNet, self).__init__() | ||||
| self.normal = P.Normal(seed=seed) | self.normal = P.Normal(seed=seed) | ||||
| self.shape = shape | self.shape = shape | ||||
| self.mean = Tensor(mean, mstype.float32) | |||||
| self.stddev = Tensor(stddev, mstype.float32) | |||||
| def construct(self): | |||||
| out = self.normal(self.shape, self.mean, self.stddev) | |||||
| def construct(self, mean, stddev): | |||||
| out = self.normal(self.shape, mean, stddev) | |||||
| return out | |||||
| class GammaNet(nn.Cell): | |||||
| def __init__(self, shape=None, seed=0): | |||||
| super(GammaNet, self).__init__() | |||||
| self.gamma = P.Gamma(seed=seed) | |||||
| self.shape = shape | |||||
| def construct(self, alpha, beta): | |||||
| out = self.gamma(self.shape, alpha, beta) | |||||
| return out | |||||
| class PoissonNet(nn.Cell): | |||||
| def __init__(self, shape=None, seed=0): | |||||
| super(PoissonNet, self).__init__() | |||||
| self.poisson = P.Poisson(seed=seed) | |||||
| self.shape = shape | |||||
| def construct(self, mean): | |||||
| out = self.poisson(self.shape, mean) | |||||
| return out | |||||
| class UniformIntNet(nn.Cell): | |||||
| def __init__(self, shape=None, seed=0): | |||||
| super(UniformIntNet, self).__init__() | |||||
| self.uniformint = P.UniformInt(seed=seed) | |||||
| self.shape = shape | |||||
| def construct(self, a, b): | |||||
| out = self.uniformint(self.shape, a, b) | |||||
| return out | |||||
| class UniformRealNet(nn.Cell): | |||||
| def __init__(self, shape=None, seed=0): | |||||
| super(UniformRealNet, self).__init__() | |||||
| self.uniformreal = P.UniformReal(seed=seed) | |||||
| self.shape = shape | |||||
| def construct(self, a, b): | |||||
| out = self.uniformreal(self.shape, a, b) | |||||
| return out | return out | ||||
| @@ -620,6 +662,26 @@ test_case_math_ops = [ | |||||
| (1, 1, 1)], | (1, 1, 1)], | ||||
| 'desc_inputs': [[64, 128, 1024]], | 'desc_inputs': [[64, 128, 1024]], | ||||
| 'skip': ['backward']}), | 'skip': ['backward']}), | ||||
| ('Normal', { | |||||
| 'block': NormalNet((3, 2, 4), 0), | |||||
| 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)], | |||||
| 'skip': ['backward']}), | |||||
| ('Gamma', { | |||||
| 'block': GammaNet((3, 2, 4), 0), | |||||
| 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)], | |||||
| 'skip': ['backward']}), | |||||
| ('Poisson', { | |||||
| 'block': PoissonNet((3, 2, 4), 0), | |||||
| 'desc_inputs': [Tensor(2.0, mstype.float32)], | |||||
| 'skip': ['backward']}), | |||||
| ('UniformInt', { | |||||
| 'block': UniformIntNet((3, 2, 4), 0), | |||||
| 'desc_inputs': [Tensor(1, mstype.int32), Tensor(15, mstype.int32)], | |||||
| 'skip': ['backward']}), | |||||
| ('UniformReal', { | |||||
| 'block': UniformRealNet((3, 2, 4), 0), | |||||
| 'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(5.0, mstype.float32)], | |||||
| 'skip': ['backward']}), | |||||
| ('RandomChoiceWithMask', { | ('RandomChoiceWithMask', { | ||||
| 'block': P.RandomChoiceWithMask(256), | 'block': P.RandomChoiceWithMask(256), | ||||
| 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))], | 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))], | ||||
| @@ -908,10 +970,6 @@ test_case_math_ops = [ | |||||
| 'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)], | 'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)], | ||||
| 'desc_bprop': [], | 'desc_bprop': [], | ||||
| 'skip': ['backward']}), | 'skip': ['backward']}), | ||||
| ('Normal', { | |||||
| 'block': NormalNet((3, 2, 4), 0.0, 1.0, 0), | |||||
| 'desc_inputs': [], | |||||
| 'skip': ['backward']}), | |||||
| ] | ] | ||||
| test_case_nn_ops = [ | test_case_nn_ops = [ | ||||