Browse Source

improve cnnctc speed

tags/v1.1.0
linqingke 5 years ago
parent
commit
937e165513
2 changed files with 19 additions and 20 deletions
  1. +18
    -18
      model_zoo/official/cv/cnnctc/README.md
  2. +1
    -2
      model_zoo/official/cv/cnnctc/src/cnn_ctc.py

+ 18
- 18
model_zoo/official/cv/cnnctc/README.md View File

@@ -212,23 +212,23 @@ Training result will be stored in the example path, whose folder name begins wit
```
# distribute training result(8p)
epoch: 1 step: 1 , loss is 76.25, average time per step is 0.335177839748392712
epoch: 1 step: 2 , loss is 73.46875, average time per step is 0.36798572540283203
epoch: 1 step: 3 , loss is 69.46875, average time per step is 0.3429678678512573
epoch: 1 step: 4 , loss is 64.3125, average time per step is 0.33512671788533527
epoch: 1 step: 5 , loss is 58.375, average time per step is 0.33149147033691406
epoch: 1 step: 6 , loss is 52.7265625, average time per step is 0.3292975425720215
epoch: 1 step: 1 , loss is 76.25, average time per step is 0.235177839748392712
epoch: 1 step: 2 , loss is 73.46875, average time per step is 0.25798572540283203
epoch: 1 step: 3 , loss is 69.46875, average time per step is 0.229678678512573
epoch: 1 step: 4 , loss is 64.3125, average time per step is 0.23512671788533527
epoch: 1 step: 5 , loss is 58.375, average time per step is 0.23149147033691406
epoch: 1 step: 6 , loss is 52.7265625, average time per step is 0.2292975425720215
...
epoch: 1 step: 8689 , loss is 9.706798802612482, average time per step is 0.3184656601312549
epoch: 1 step: 8690 , loss is 9.70612545289855, average time per step is 0.3184725407765116
epoch: 1 step: 8691 , loss is 9.70695776049204, average time per step is 0.31847309686135555
epoch: 1 step: 8692 , loss is 9.707279624277456, average time per step is 0.31847339290613375
epoch: 1 step: 8693 , loss is 9.70763437950938, average time per step is 0.3184720295013031
epoch: 1 step: 8694 , loss is 9.707695425072046, average time per step is 0.31847410284595573
epoch: 1 step: 8695 , loss is 9.708408273381295, average time per step is 0.31847338271072345
epoch: 1 step: 8696 , loss is 9.708703753591953, average time per step is 0.3184726025560777
epoch: 1 step: 8697 , loss is 9.709536406025824, average time per step is 0.31847212061114694
epoch: 1 step: 8698 , loss is 9.708542263610315, average time per step is 0.3184715309307257
epoch: 1 step: 8689 , loss is 9.706798802612482, average time per step is 0.2184656601312549
epoch: 1 step: 8690 , loss is 9.70612545289855, average time per step is 0.2184725407765116
epoch: 1 step: 8691 , loss is 9.70695776049204, average time per step is 0.21847309686135555
epoch: 1 step: 8692 , loss is 9.707279624277456, average time per step is 0.21847339290613375
epoch: 1 step: 8693 , loss is 9.70763437950938, average time per step is 0.2184720295013031
epoch: 1 step: 8694 , loss is 9.707695425072046, average time per step is 0.21847410284595573
epoch: 1 step: 8695 , loss is 9.708408273381295, average time per step is 0.21847338271072345
epoch: 1 step: 8696 , loss is 9.708703753591953, average time per step is 0.2184726025560777
epoch: 1 step: 8697 , loss is 9.709536406025824, average time per step is 0.21847212061114694
epoch: 1 step: 8698 , loss is 9.708542263610315, average time per step is 0.2184715309307257
```
## [Evaluation Process](#contents)
@@ -257,8 +257,8 @@ The model will be evaluated on the IIIT dataset, sample results and overall accu
| Training Parameters | epoch=3, batch_size=192 |
| Optimizer | RMSProp |
| Loss Function | CTCLoss |
| Speed | 1pc: 300 ms/step; 8pcs: 310 ms/step |
| Total time | 1pc: 18 hours; 8pcs: 2.3 hours |
| Speed | 1pc: 250 ms/step; 8pcs: 260 ms/step |
| Total time | 1pc: 15 hours; 8pcs: 1.92 hours |
| Parameters (M) | 177 |
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/cnnctc |


+ 1
- 2
model_zoo/official/cv/cnnctc/src/cnn_ctc.py View File

@@ -116,7 +116,7 @@ class ResNet(nn.Cell):
pad_mode='pad')
self.bn2 = ms_fused_bn(self.output_channel_block[1])
self.pad = P.Pad(((0, 0), (0, 0), (0, 0), (1, 1)))
self.pad = P.Pad(((0, 0), (0, 0), (0, 0), (2, 2)))
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), pad_mode='valid')
self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2])
self.conv3 = ms_conv3x3(self.output_channel_block[2], self.output_channel_block[2], stride=1, padding=1,
@@ -168,7 +168,6 @@ class ResNet(nn.Cell):
x = self.bn2(x)
x = self.relu(x)
x = self.pad(x)
x = self.maxpool3(x)
x = self.layer3(x)
x = self.conv3(x)


Loading…
Cancel
Save