diff --git a/model_zoo/official/cv/cnnctc/README.md b/model_zoo/official/cv/cnnctc/README.md index 452c5a1d51..0ec86bd8c5 100644 --- a/model_zoo/official/cv/cnnctc/README.md +++ b/model_zoo/official/cv/cnnctc/README.md @@ -212,23 +212,23 @@ Training result will be stored in the example path, whose folder name begins wit ``` # distribute training result(8p) -epoch: 1 step: 1 , loss is 76.25, average time per step is 0.335177839748392712 -epoch: 1 step: 2 , loss is 73.46875, average time per step is 0.36798572540283203 -epoch: 1 step: 3 , loss is 69.46875, average time per step is 0.3429678678512573 -epoch: 1 step: 4 , loss is 64.3125, average time per step is 0.33512671788533527 -epoch: 1 step: 5 , loss is 58.375, average time per step is 0.33149147033691406 -epoch: 1 step: 6 , loss is 52.7265625, average time per step is 0.3292975425720215 +epoch: 1 step: 1 , loss is 76.25, average time per step is 0.235177839748392712 +epoch: 1 step: 2 , loss is 73.46875, average time per step is 0.25798572540283203 +epoch: 1 step: 3 , loss is 69.46875, average time per step is 0.229678678512573 +epoch: 1 step: 4 , loss is 64.3125, average time per step is 0.23512671788533527 +epoch: 1 step: 5 , loss is 58.375, average time per step is 0.23149147033691406 +epoch: 1 step: 6 , loss is 52.7265625, average time per step is 0.2292975425720215 ... -epoch: 1 step: 8689 , loss is 9.706798802612482, average time per step is 0.3184656601312549 -epoch: 1 step: 8690 , loss is 9.70612545289855, average time per step is 0.3184725407765116 -epoch: 1 step: 8691 , loss is 9.70695776049204, average time per step is 0.31847309686135555 -epoch: 1 step: 8692 , loss is 9.707279624277456, average time per step is 0.31847339290613375 -epoch: 1 step: 8693 , loss is 9.70763437950938, average time per step is 0.3184720295013031 -epoch: 1 step: 8694 , loss is 9.707695425072046, average time per step is 0.31847410284595573 -epoch: 1 step: 8695 , loss is 9.708408273381295, average time per step is 0.31847338271072345 -epoch: 1 step: 8696 , loss is 9.708703753591953, average time per step is 0.3184726025560777 -epoch: 1 step: 8697 , loss is 9.709536406025824, average time per step is 0.31847212061114694 -epoch: 1 step: 8698 , loss is 9.708542263610315, average time per step is 0.3184715309307257 +epoch: 1 step: 8689 , loss is 9.706798802612482, average time per step is 0.2184656601312549 +epoch: 1 step: 8690 , loss is 9.70612545289855, average time per step is 0.2184725407765116 +epoch: 1 step: 8691 , loss is 9.70695776049204, average time per step is 0.21847309686135555 +epoch: 1 step: 8692 , loss is 9.707279624277456, average time per step is 0.21847339290613375 +epoch: 1 step: 8693 , loss is 9.70763437950938, average time per step is 0.2184720295013031 +epoch: 1 step: 8694 , loss is 9.707695425072046, average time per step is 0.21847410284595573 +epoch: 1 step: 8695 , loss is 9.708408273381295, average time per step is 0.21847338271072345 +epoch: 1 step: 8696 , loss is 9.708703753591953, average time per step is 0.2184726025560777 +epoch: 1 step: 8697 , loss is 9.709536406025824, average time per step is 0.21847212061114694 +epoch: 1 step: 8698 , loss is 9.708542263610315, average time per step is 0.2184715309307257 ``` ## [Evaluation Process](#contents) @@ -257,8 +257,8 @@ The model will be evaluated on the IIIT dataset, sample results and overall accu | Training Parameters | epoch=3, batch_size=192 | | Optimizer | RMSProp | | Loss Function | CTCLoss | -| Speed | 1pc: 300 ms/step; 8pcs: 310 ms/step | -| Total time | 1pc: 18 hours; 8pcs: 2.3 hours | +| Speed | 1pc: 250 ms/step; 8pcs: 260 ms/step | +| Total time | 1pc: 15 hours; 8pcs: 1.92 hours | | Parameters (M) | 177 | | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/cnnctc | diff --git a/model_zoo/official/cv/cnnctc/src/cnn_ctc.py b/model_zoo/official/cv/cnnctc/src/cnn_ctc.py index 89abbf9058..cd8a2f63ef 100644 --- a/model_zoo/official/cv/cnnctc/src/cnn_ctc.py +++ b/model_zoo/official/cv/cnnctc/src/cnn_ctc.py @@ -116,7 +116,7 @@ class ResNet(nn.Cell): pad_mode='pad') self.bn2 = ms_fused_bn(self.output_channel_block[1]) - self.pad = P.Pad(((0, 0), (0, 0), (0, 0), (1, 1))) + self.pad = P.Pad(((0, 0), (0, 0), (0, 0), (2, 2))) self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), pad_mode='valid') self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2]) self.conv3 = ms_conv3x3(self.output_channel_block[2], self.output_channel_block[2], stride=1, padding=1, @@ -168,7 +168,6 @@ class ResNet(nn.Cell): x = self.bn2(x) x = self.relu(x) - x = self.pad(x) x = self.maxpool3(x) x = self.layer3(x) x = self.conv3(x)