|
|
|
@@ -0,0 +1,37 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
"""lr generator for ncf""" |
|
|
|
import math |
|
|
|
|
|
|
|
def _linear_warmup_learning_rate(current_step, warmup_steps, base_lr, init_lr): |
|
|
|
lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps) |
|
|
|
learning_rate = float(init_lr) + lr_inc * current_step |
|
|
|
return learning_rate |
|
|
|
|
|
|
|
def _cosine_learning_rate(current_step, base_lr, warmup_steps, decay_steps): |
|
|
|
base = float(current_step - warmup_steps) / float(decay_steps) |
|
|
|
learning_rate = (1 + math.cos(base * math.pi)) / 2 * base_lr |
|
|
|
return learning_rate |
|
|
|
|
|
|
|
def dynamic_lr(base_lr, total_steps, warmup_steps): |
|
|
|
"""dynamic learning rate generator""" |
|
|
|
lr = [] |
|
|
|
for i in range(total_steps): |
|
|
|
if i < warmup_steps: |
|
|
|
lr.append(_linear_warmup_learning_rate(i, warmup_steps, base_lr, base_lr * 0.01)) |
|
|
|
else: |
|
|
|
lr.append(_cosine_learning_rate(i, base_lr, warmup_steps, total_steps)) |
|
|
|
|
|
|
|
return lr |