From: @linqingke Reviewed-by: @wuxuejian,@liangchenghui Signed-off-by: @liangchenghuitags/v1.1.0
| @@ -37,7 +37,6 @@ config = ed({ | |||||
| # dataset for train | # dataset for train | ||||
| "TRAIN_ROOT_DIR": "psenet/ic15/", | "TRAIN_ROOT_DIR": "psenet/ic15/", | ||||
| "TRAIN_IS_TRANSFORM": True, | |||||
| "TRAIN_LONG_SIZE": 640, | "TRAIN_LONG_SIZE": 640, | ||||
| "TRAIN_MIN_SCALE": 0.4, | "TRAIN_MIN_SCALE": 0.4, | ||||
| "TRAIN_BATCH_SIZE": 4, | "TRAIN_BATCH_SIZE": 4, | ||||
| @@ -160,7 +160,7 @@ def shrink(bboxes, rate, max_shr=20): | |||||
| class TrainDataset: | class TrainDataset: | ||||
| def __init__(self): | def __init__(self): | ||||
| self.is_transform = config.TRAIN_IS_TRANSFORM | |||||
| self.is_transform = True | |||||
| self.img_size = config.TRAIN_LONG_SIZE | self.img_size = config.TRAIN_LONG_SIZE | ||||
| self.kernel_num = config.KERNEL_NUM | self.kernel_num = config.KERNEL_NUM | ||||
| self.min_scale = config.TRAIN_MIN_SCALE | self.min_scale = config.TRAIN_MIN_SCALE | ||||
| @@ -0,0 +1,37 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """lr generator for ncf""" | |||||
| import math | |||||
| def _linear_warmup_learning_rate(current_step, warmup_steps, base_lr, init_lr): | |||||
| lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps) | |||||
| learning_rate = float(init_lr) + lr_inc * current_step | |||||
| return learning_rate | |||||
| def _cosine_learning_rate(current_step, base_lr, warmup_steps, decay_steps): | |||||
| base = float(current_step - warmup_steps) / float(decay_steps) | |||||
| learning_rate = (1 + math.cos(base * math.pi)) / 2 * base_lr | |||||
| return learning_rate | |||||
| def dynamic_lr(base_lr, total_steps, warmup_steps): | |||||
| """dynamic learning rate generator""" | |||||
| lr = [] | |||||
| for i in range(total_steps): | |||||
| if i < warmup_steps: | |||||
| lr.append(_linear_warmup_learning_rate(i, warmup_steps, base_lr, base_lr * 0.01)) | |||||
| else: | |||||
| lr.append(_cosine_learning_rate(i, base_lr, warmup_steps, total_steps)) | |||||
| return lr | |||||
| @@ -26,6 +26,8 @@ from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_ | |||||
| from mindspore.context import ParallelMode | from mindspore.context import ParallelMode | ||||
| from mindspore.nn.wrap.grad_reducer import DistributedGradReducer | from mindspore.nn.wrap.grad_reducer import DistributedGradReducer | ||||
| from src.lr_schedule import dynamic_lr | |||||
| class DenseLayer(nn.Cell): | class DenseLayer(nn.Cell): | ||||
| """ | """ | ||||
| Dense layer definition | Dense layer definition | ||||
| @@ -223,14 +225,16 @@ class TrainStepWrap(nn.Cell): | |||||
| """ | """ | ||||
| TrainStepWrap definition | TrainStepWrap definition | ||||
| """ | """ | ||||
| def __init__(self, network, sens=16384.0): | |||||
| def __init__(self, network, total_steps=1, sens=16384.0): | |||||
| super(TrainStepWrap, self).__init__(auto_prefix=False) | super(TrainStepWrap, self).__init__(auto_prefix=False) | ||||
| self.network = network | self.network = network | ||||
| self.network.set_train() | self.network.set_train() | ||||
| self.network.add_flags(defer_inline=True) | self.network.add_flags(defer_inline=True) | ||||
| self.weights = ParameterTuple(network.trainable_params()) | self.weights = ParameterTuple(network.trainable_params()) | ||||
| lr = dynamic_lr(0.01, total_steps, 5000) | |||||
| self.optimizer = nn.Adam(self.weights, | self.optimizer = nn.Adam(self.weights, | ||||
| learning_rate=0.00382059, | |||||
| learning_rate=lr, | |||||
| beta1=0.9, | beta1=0.9, | ||||
| beta2=0.999, | beta2=0.999, | ||||
| eps=1e-8, | eps=1e-8, | ||||
| @@ -22,12 +22,15 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMoni | |||||
| from mindspore import context, Model | from mindspore import context, Model | ||||
| from mindspore.context import ParallelMode | from mindspore.context import ParallelMode | ||||
| from mindspore.communication.management import get_rank, get_group_size, init | from mindspore.communication.management import get_rank, get_group_size, init | ||||
| from mindspore.common import set_seed | |||||
| from src.dataset import create_dataset | from src.dataset import create_dataset | ||||
| from src.ncf import NCFModel, NetWithLossClass, TrainStepWrap | from src.ncf import NCFModel, NetWithLossClass, TrainStepWrap | ||||
| from config import cfg | from config import cfg | ||||
| set_seed(1) | |||||
| logging.set_verbosity(logging.INFO) | logging.set_verbosity(logging.INFO) | ||||
| parser = argparse.ArgumentParser(description='NCF') | parser = argparse.ArgumentParser(description='NCF') | ||||
| @@ -86,7 +89,7 @@ def test_train(): | |||||
| mlp_reg_layers=[0.0, 0.0, 0.0, 0.0], | mlp_reg_layers=[0.0, 0.0, 0.0, 0.0], | ||||
| mf_dim=16) | mf_dim=16) | ||||
| loss_net = NetWithLossClass(ncf_net) | loss_net = NetWithLossClass(ncf_net) | ||||
| train_net = TrainStepWrap(loss_net) | |||||
| train_net = TrainStepWrap(loss_net, ds_train.get_dataset_size() * (epochs + 1)) | |||||
| train_net.set_train() | train_net.set_train() | ||||