|
|
|
@@ -77,8 +77,7 @@ class Randperm(PrimitiveWithInfer): |
|
|
|
dtype (mindspore.dtype): The type of output. Default: mindspore.int32. |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **n** (Tensor[int]) - The input tensor with shape: (1,) and the number must be in (0, `max_length`]. |
|
|
|
Default: 1. |
|
|
|
- **n** (Tensor[int32]) - The input tensor with shape: (1,) and the number must be in [0, `max_length`]. |
|
|
|
|
|
|
|
Outputs: |
|
|
|
- **output** (Tensor) - The output Tensor with shape: (`max_length`,) and type: `dtype`. |
|
|
|
@@ -87,6 +86,7 @@ class Randperm(PrimitiveWithInfer): |
|
|
|
TypeError: If neither `max_length` nor `pad` is an int. |
|
|
|
TypeError: If `n` is not a Tensor. |
|
|
|
TypeError: If `n` has non-Int elements. |
|
|
|
TypeError: If `n` has negative elements. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``Ascend`` |
|
|
|
@@ -96,7 +96,7 @@ class Randperm(PrimitiveWithInfer): |
|
|
|
>>> n = Tensor([20], dtype=mindspore.int32) |
|
|
|
>>> output = randperm(n) |
|
|
|
>>> print(output) |
|
|
|
[15 6 11 19 14 16 9 5 13 18 4 10 8 0 17 2 14 1 12 3 7 |
|
|
|
[15 6 11 19 14 16 9 5 13 18 4 10 8 0 17 2 1 12 3 7 |
|
|
|
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1] |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -105,7 +105,7 @@ class Randperm(PrimitiveWithInfer): |
|
|
|
"""Initialize Randperm""" |
|
|
|
validator.check_value_type("pad", pad, [int], self.name) |
|
|
|
validator.check_value_type("max_length", max_length, [int], self.name) |
|
|
|
validator.check_int(max_length, 1, Rel.GE, "1", self.name) |
|
|
|
validator.check_int(max_length, 1, Rel.GE, "max_length", self.name) |
|
|
|
self.dtype = dtype |
|
|
|
self.max_length = max_length |
|
|
|
self.init_prim_io_names(inputs=[], outputs=['output']) |
|
|
|
|