diff --git a/mindspore/ops/operations/inner_ops.py b/mindspore/ops/operations/inner_ops.py index 357f799cf1..53b23dbdcd 100644 --- a/mindspore/ops/operations/inner_ops.py +++ b/mindspore/ops/operations/inner_ops.py @@ -77,8 +77,7 @@ class Randperm(PrimitiveWithInfer): dtype (mindspore.dtype): The type of output. Default: mindspore.int32. Inputs: - - **n** (Tensor[int]) - The input tensor with shape: (1,) and the number must be in (0, `max_length`]. - Default: 1. + - **n** (Tensor[int32]) - The input tensor with shape: (1,) and the number must be in [0, `max_length`]. Outputs: - **output** (Tensor) - The output Tensor with shape: (`max_length`,) and type: `dtype`. @@ -87,6 +86,7 @@ class Randperm(PrimitiveWithInfer): TypeError: If neither `max_length` nor `pad` is an int. TypeError: If `n` is not a Tensor. TypeError: If `n` has non-Int elements. + TypeError: If `n` has negative elements. Supported Platforms: ``Ascend`` @@ -96,7 +96,7 @@ class Randperm(PrimitiveWithInfer): >>> n = Tensor([20], dtype=mindspore.int32) >>> output = randperm(n) >>> print(output) - [15 6 11 19 14 16 9 5 13 18 4 10 8 0 17 2 14 1 12 3 7 + [15 6 11 19 14 16 9 5 13 18 4 10 8 0 17 2 1 12 3 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1] """ @@ -105,7 +105,7 @@ class Randperm(PrimitiveWithInfer): """Initialize Randperm""" validator.check_value_type("pad", pad, [int], self.name) validator.check_value_type("max_length", max_length, [int], self.name) - validator.check_int(max_length, 1, Rel.GE, "1", self.name) + validator.check_int(max_length, 1, Rel.GE, "max_length", self.name) self.dtype = dtype self.max_length = max_length self.init_prim_io_names(inputs=[], outputs=['output'])