| @@ -13,18 +13,26 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import os | |||
| import pytest | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| import mindspore.context as context | |||
| from mindspore import Tensor | |||
| from mindspore.nn.optim import Momentum | |||
| import mindspore.context as context | |||
| from mindspore.ops import operations as P | |||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||
| from mindspore.nn import Dense | |||
| from mindspore.common.initializer import initializer | |||
| import mindspore.nn as nn | |||
| from mindspore.nn import Dense, TrainOneStepCell, WithLossCell | |||
| from mindspore.nn.optim import Momentum | |||
| from mindspore.nn.metrics import Accuracy | |||
| from mindspore.train import Model | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.model_zoo.lenet import LeNet5 | |||
| from mindspore.train.callback import LossMonitor | |||
| import mindspore.dataset as ds | |||
| import mindspore.dataset.transforms.vision.c_transforms as CV | |||
| import mindspore.dataset.transforms.c_transforms as C | |||
| from mindspore.dataset.transforms.vision import Inter | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| @@ -64,7 +72,7 @@ class LeNet(nn.Cell): | |||
| def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32): | |||
| lr = [] | |||
| for step in range(total_steps): | |||
| lr_ = base_lr * gamma ** (step//gap) | |||
| lr_ = base_lr * gamma ** (step // gap) | |||
| lr.append(lr_) | |||
| return Tensor(np.array(lr), dtype) | |||
| @@ -90,3 +98,60 @@ def test_train_lenet(): | |||
| loss = train_network(data, label) | |||
| losses.append(loss) | |||
| print(losses) | |||
| def create_dataset(data_path, batch_size=32, repeat_size=1, | |||
| num_parallel_workers=1): | |||
| """ | |||
| create dataset for train or test | |||
| """ | |||
| # define dataset | |||
| mnist_ds = ds.MnistDataset(data_path) | |||
| resize_height, resize_width = 32, 32 | |||
| rescale = 1.0 / 255.0 | |||
| shift = 0.0 | |||
| rescale_nml = 1 / 0.3081 | |||
| shift_nml = -1 * 0.1307 / 0.3081 | |||
| # define map operations | |||
| resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode | |||
| rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) | |||
| rescale_op = CV.Rescale(rescale, shift) | |||
| hwc2chw_op = CV.HWC2CHW() | |||
| type_cast_op = C.TypeCast(mstype.int32) | |||
| # apply map operations on images | |||
| mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) | |||
| # apply DatasetOps | |||
| buffer_size = 10000 | |||
| mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script | |||
| mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) | |||
| mnist_ds = mnist_ds.repeat(repeat_size) | |||
| return mnist_ds | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_train_and_eval_lenet(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU", enable_mem_reuse=False) | |||
| network = LeNet5(10) | |||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||
| net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) | |||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||
| print("============== Starting Training ==============") | |||
| ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1) | |||
| model.train(1, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=True) | |||
| print("============== Starting Testing ==============") | |||
| ds_eval = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "test"), 32, 1) | |||
| acc = model.eval(ds_eval, dataset_sink_mode=True) | |||
| print("============== Accuracy:{} ==============".format(acc)) | |||