| @@ -13,18 +13,26 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| import os | |||||
| import pytest | import pytest | ||||
| import numpy as np | import numpy as np | ||||
| import mindspore.nn as nn | |||||
| import mindspore.context as context | |||||
| from mindspore import Tensor | from mindspore import Tensor | ||||
| from mindspore.nn.optim import Momentum | |||||
| import mindspore.context as context | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||||
| from mindspore.nn import Dense | |||||
| from mindspore.common.initializer import initializer | |||||
| import mindspore.nn as nn | |||||
| from mindspore.nn import Dense, TrainOneStepCell, WithLossCell | |||||
| from mindspore.nn.optim import Momentum | |||||
| from mindspore.nn.metrics import Accuracy | |||||
| from mindspore.train import Model | |||||
| from mindspore.common import dtype as mstype | from mindspore.common import dtype as mstype | ||||
| from mindspore.common.initializer import initializer | |||||
| from mindspore.model_zoo.lenet import LeNet5 | |||||
| from mindspore.train.callback import LossMonitor | |||||
| import mindspore.dataset as ds | |||||
| import mindspore.dataset.transforms.vision.c_transforms as CV | |||||
| import mindspore.dataset.transforms.c_transforms as C | |||||
| from mindspore.dataset.transforms.vision import Inter | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | ||||
| @@ -64,7 +72,7 @@ class LeNet(nn.Cell): | |||||
| def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32): | def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32): | ||||
| lr = [] | lr = [] | ||||
| for step in range(total_steps): | for step in range(total_steps): | ||||
| lr_ = base_lr * gamma ** (step//gap) | |||||
| lr_ = base_lr * gamma ** (step // gap) | |||||
| lr.append(lr_) | lr.append(lr_) | ||||
| return Tensor(np.array(lr), dtype) | return Tensor(np.array(lr), dtype) | ||||
| @@ -90,3 +98,60 @@ def test_train_lenet(): | |||||
| loss = train_network(data, label) | loss = train_network(data, label) | ||||
| losses.append(loss) | losses.append(loss) | ||||
| print(losses) | print(losses) | ||||
| def create_dataset(data_path, batch_size=32, repeat_size=1, | |||||
| num_parallel_workers=1): | |||||
| """ | |||||
| create dataset for train or test | |||||
| """ | |||||
| # define dataset | |||||
| mnist_ds = ds.MnistDataset(data_path) | |||||
| resize_height, resize_width = 32, 32 | |||||
| rescale = 1.0 / 255.0 | |||||
| shift = 0.0 | |||||
| rescale_nml = 1 / 0.3081 | |||||
| shift_nml = -1 * 0.1307 / 0.3081 | |||||
| # define map operations | |||||
| resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode | |||||
| rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) | |||||
| rescale_op = CV.Rescale(rescale, shift) | |||||
| hwc2chw_op = CV.HWC2CHW() | |||||
| type_cast_op = C.TypeCast(mstype.int32) | |||||
| # apply map operations on images | |||||
| mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) | |||||
| # apply DatasetOps | |||||
| buffer_size = 10000 | |||||
| mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script | |||||
| mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) | |||||
| mnist_ds = mnist_ds.repeat(repeat_size) | |||||
| return mnist_ds | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_train_and_eval_lenet(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU", enable_mem_reuse=False) | |||||
| network = LeNet5(10) | |||||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) | |||||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||||
| print("============== Starting Training ==============") | |||||
| ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1) | |||||
| model.train(1, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=True) | |||||
| print("============== Starting Testing ==============") | |||||
| ds_eval = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "test"), 32, 1) | |||||
| acc = model.eval(ds_eval, dataset_sink_mode=True) | |||||
| print("============== Accuracy:{} ==============".format(acc)) | |||||