From: @zhao_ting_v Reviewed-by: @wuxuejian,@liangchenghui Signed-off-by: @wuxuejianpull/15255/MERGE
| @@ -0,0 +1,89 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/iou_cpu_kernel.h" | |||
| #include <cmath> | |||
| #include <string> | |||
| #include <algorithm> | |||
| #include "backend/kernel_compiler/cpu/mkldnn/mkl_kernel_engine.h" | |||
| #include "runtime/device/cpu/cpu_device_address.h" | |||
| #include "utils/ms_utils.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| void IOUCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) { | |||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||
| auto anchor_boxes_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0); | |||
| if (anchor_boxes_shape.size() != 2 || anchor_boxes_shape[1] != 4) { | |||
| MS_LOG(EXCEPTION) << "The anchor_boxes shape should be [N, 4]."; | |||
| } | |||
| anchor_boxes_size_ = anchor_boxes_shape[0]; | |||
| auto gt_boxes_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1); | |||
| if (gt_boxes_shape.size() != 2 || gt_boxes_shape[1] != 4) { | |||
| MS_LOG(EXCEPTION) << "The gt_boxes shape should be [N, 4]."; | |||
| } | |||
| gt_boxes_size_ = gt_boxes_shape[0]; | |||
| iou_size_ = anchor_boxes_size_ * gt_boxes_size_; | |||
| std::string iou_mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, "mode"); | |||
| if (iou_mode != "iou" && iou_mode != "iof") { | |||
| MS_LOG(EXCEPTION) << "IOU mode should be 'iou', 'iof'."; | |||
| } | |||
| if (iou_mode == "iof") { | |||
| mode_ = 1; | |||
| } | |||
| } | |||
| template <typename T> | |||
| bool IOUCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| if (inputs.size() != 2) { | |||
| MS_LOG(EXCEPTION) << "Input number is " << inputs.size() << ", but IOU needs 2 inputs."; | |||
| } | |||
| if (outputs.size() != 1) { | |||
| MS_LOG(EXCEPTION) << "Output number is " << outputs.size() << ", but IOU needs 1 outputs."; | |||
| } | |||
| auto anchor_boxes = reinterpret_cast<T *>(inputs[0]->addr); | |||
| auto gt_boxes = reinterpret_cast<T *>(inputs[1]->addr); | |||
| auto iou_score = reinterpret_cast<T *>(outputs[0]->addr); | |||
| // multithreading | |||
| auto task = [&](size_t start, size_t end) { | |||
| for (size_t i = start; i < end; i++) { | |||
| int idx1 = i % anchor_boxes_size_ * 4; | |||
| int idx2 = i / anchor_boxes_size_ * 4; | |||
| T I_x0 = std::max(anchor_boxes[idx1], gt_boxes[idx2]); | |||
| T I_y0 = std::max(anchor_boxes[idx1 + 1], gt_boxes[idx2 + 1]); | |||
| T I_x1 = std::min(anchor_boxes[idx1 + 2], gt_boxes[idx2 + 2]); | |||
| T I_y1 = std::min(anchor_boxes[idx1 + 3], gt_boxes[idx2 + 3]); | |||
| T overlaps = std::max(T(0), (I_x1 - I_x0 + T(1)) * (I_y1 - I_y0 + T(1))); | |||
| T area1 = | |||
| (anchor_boxes[idx1 + 2] - anchor_boxes[idx1] + T(1)) * (anchor_boxes[idx1 + 3] - anchor_boxes[idx1 + 1] + T(1)); | |||
| T area2 = (gt_boxes[idx2 + 2] - gt_boxes[idx2] + T(1)) * (gt_boxes[idx2 + 3] - gt_boxes[idx2 + 1] + T(1)); | |||
| if (mode_ == 0) { | |||
| iou_score[i] = overlaps / (area1 + area2 - overlaps + T(1e-10)); | |||
| } else { | |||
| iou_score[i] = overlaps / (area2 + T(1e-10)); | |||
| } | |||
| } | |||
| }; | |||
| CPUKernelUtils::ParallelFor(task, iou_size_); | |||
| return true; | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,52 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IOU_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IOU_CPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include <memory> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class IOUCPUKernel : public CPUKernel { | |||
| public: | |||
| IOUCPUKernel() = default; | |||
| ~IOUCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| private: | |||
| int mode_{0}; | |||
| size_t anchor_boxes_size_{0}; | |||
| size_t gt_boxes_size_{0}; | |||
| size_t iou_size_{0}; | |||
| }; | |||
| MS_REG_CPU_KERNEL_T( | |||
| IOU, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| IOUCPUKernel, float) | |||
| MS_REG_CPU_KERNEL_T( | |||
| IOU, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| IOUCPUKernel, float16) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IOU_CPU_KERNEL_H_ | |||
| @@ -363,7 +363,7 @@ class IOU(PrimitiveWithInfer): | |||
| KeyError: When `mode` is not 'iou' or 'iof'. | |||
| Supported Platforms: | |||
| ``Ascend`` ``GPU`` | |||
| ``Ascend`` ``GPU`` ``CPU`` | |||
| Examples: | |||
| >>> iou = ops.IOU() | |||
| @@ -0,0 +1,57 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| class NetIOU(nn.Cell): | |||
| def __init__(self, mode): | |||
| super(NetIOU, self).__init__() | |||
| self.encode = P.IOU(mode=mode) | |||
| def construct(self, anchor, groundtruth): | |||
| return self.encode(anchor, groundtruth) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_iou(): | |||
| pos1 = [[101, 169, 246, 429], [107, 150, 277, 400], [103, 130, 220, 400]] | |||
| pos2 = [[121, 138, 304, 374], [97, 130, 250, 400]] | |||
| mode = "iou" | |||
| pos1_box = Tensor(np.array(pos1), mindspore.float32) | |||
| pos2_box = Tensor(np.array(pos2), mindspore.float32) | |||
| expect_result = np.array([[0.46551168, 0.6898875, 0.4567706], [0.73686045, 0.74506813, 0.76623374]], np.float32) | |||
| error = np.ones(shape=[1]) * 1.0e-6 | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='CPU') | |||
| overlaps = NetIOU(mode) | |||
| output = overlaps(pos1_box, pos2_box) | |||
| diff = output.asnumpy() - expect_result | |||
| assert np.all(abs(diff) < error) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target='CPU') | |||
| overlaps = NetIOU(mode) | |||
| output = overlaps(pos1_box, pos2_box) | |||
| diff = output.asnumpy() - expect_result | |||
| assert np.all(abs(diff) < error) | |||