|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Other operators."""
- import functools
- from mindspore.common import monad
- from mindspore.common._decorator import deprecated
- from .. import signature as sig
- from ..._checkparam import Validator as validator, Rel
- from ...common import dtype as mstype
- from ..primitive import Primitive, PrimitiveWithCheck, PrimitiveWithInfer, prim_attr_register
-
-
- class Assign(PrimitiveWithCheck):
- """
- Assigns `Parameter` with a value.
-
- Inputs of `variable` and `value` comply with the implicit type conversion rules to make the data types consistent.
- If they have different data types, lower priority data type will be converted to
- relatively highest priority data type.
- RuntimeError exception will be thrown when the data type conversion of Parameter is required.
-
- Inputs:
- - **variable** (Parameter) - The `Parameter`.
- - **value** (Tensor) - The value to be assigned.
-
- Outputs:
- Tensor, has the same type as original `variable`.
-
- Raises:
- TypeError: If `variable` is not a Parameter.
- TypeError: If `value` is not a Tensor.
-
- Supported Platforms:
- ``Ascend`` ``GPU`` ``CPU``
-
- Examples:
- >>> class Net(nn.Cell):
- ... def __init__(self):
- ... super(Net, self).__init__()
- ... self.y = mindspore.Parameter(Tensor([1.0], mindspore.float32), name="y")
- ...
- ... def construct(self, x):
- ... ops.Assign()(self.y, x)
- ... return self.y
- ...
- >>> x = Tensor([2.0], mindspore.float32)
- >>> net = Net()
- >>> output = net(x)
- >>> print(output)
- Parameter (name=y, shape=(1,), dtype=Float32, requires_grad=True)
- """
- __mindspore_signature__ = (
- sig.make_sig('variable', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
- sig.make_sig('value', dtype=sig.sig_dtype.T),
- sig.make_sig('u', default=monad.U, dtype=sig.sig_dtype.T1)
- )
-
- @prim_attr_register
- def __init__(self):
- self.init_prim_io_names(inputs=['ref', 'value'], outputs=['output'])
- self.add_prim_attr('side_effect_mem', True)
-
- def check_dtype(self, variable, value):
- types = mstype.number_type + (mstype.bool_,)
- if variable != mstype.type_refkey:
- validator.check_tensor_dtype_valid("variable", variable, types, self.name)
- validator.check_scalar_or_tensor_types_same({"value": value}, types, self.name)
-
-
- class InplaceAssign(PrimitiveWithInfer):
- """
- Inplace assign `Parameter` with a value.
- This primitive can only use in graph kernel.
-
- InplaceAssign is deprecated from version 1.3 and will be removed in a future version, use Assign instead.
-
- Inputs:
- - **variable** (Parameter) - The `Parameter`.
- - **value** (Tensor) - The value to be assigned.
- - **depend** (Tensor) - The dependent tensor to keep this op connected in graph.
-
- Outputs:
- Tensor, has the same type as original `variable`.
-
- Raises:
- TypeError: If `value` or `depend` is not a Tensor.
-
- Examples:
- >>> class Net(nn.Cell):
- ... def __init__(self):
- ... super(Net, self).__init__()
- ... self.inplace_assign = ops.InplaceAssign()
- ...
- ... def construct(self, x):
- ... val = x - 1.0
- ... ret = x + 2.0
- ... return self.inplace_assign(x, val, ret)
- ...
- >>> x = Tensor([2.0], mindspore.float32)
- >>> net = Net()
- >>> output = net(x)
- >>> print(output)
- """
- @deprecated("1.3", "Assign", False)
- @ prim_attr_register
- def __init__(self):
- self.init_prim_io_names(inputs=['x', 'y', 'z'], outputs=['output'])
-
- def infer_shape(self, x, y, z):
- return z
-
- def infer_dtype(self, x, y, z):
- return z
-
- class Load(PrimitiveWithCheck):
- """
- Load `Parameter` to a value.
-
- Inputs:
- - **variable** (Parameter) - The `Parameter`.
-
- Outputs:
- Tensor - The loaded parameter tensor value.
- """
- __mindspore_signature__ = (
- sig.make_sig('variable', sig.sig_rw.RW_READ, dtype=sig.sig_dtype.T),
- sig.make_sig('u', dtype=sig.sig_dtype.T1)
- )
-
- @prim_attr_register
- def __init__(self):
- self.init_prim_io_names(inputs=['ref', 'u'], outputs=['output'])
-
- def check_dtype(self, variable):
- if variable != mstype.type_refkey:
- validator.check_tensor_type_same({"variable": variable}, mstype.number_type, self.name)
-
- class BoundingBoxEncode(PrimitiveWithInfer):
- """
- Encodes bounding boxes locations.
-
- Args:
- means (tuple): Means for encoding bounding boxes calculation. Default: (0.0, 0.0, 0.0, 0.0).
- stds (tuple): The standard deviations of deltas calculation. Default: (1.0, 1.0, 1.0, 1.0).
-
- Inputs:
- - **anchor_box** (Tensor) - Anchor boxes. The shape of anchor_box must be (n, 4).
- - **groundtruth_box** (Tensor) - Ground truth boxes. Which has the same shape with anchor_box.
-
- Outputs:
- Tensor, encoded bounding boxes.
-
- Raises:
- TypeError: If `means` or `stds` is not a tuple.
- TypeError: If `anchor_box` or `groundtruth_box` is not a Tensor.
-
- Supported Platforms:
- ``Ascend`` ``GPU``
-
- Examples:
- >>> anchor_box = Tensor([[2, 2, 2, 3], [2, 2, 2, 3]], mindspore.float32)
- >>> groundtruth_box = Tensor([[1, 2, 1, 4], [1, 2, 1, 4]], mindspore.float32)
- >>> boundingbox_encode = ops.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0))
- >>> output = boundingbox_encode(anchor_box, groundtruth_box)
- >>> print(output)
- [[ -1. 0.25 0. 0.40551758]
- [ -1. 0.25 0. 0.40551758]]
- """
-
- @prim_attr_register
- def __init__(self, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)):
- validator.check_value_type('means', means, (tuple), self.name)
- validator.check_value_type('stds', stds, (tuple), self.name)
- for i, value in enumerate(means):
- validator.check_value_type("means[%d]" % i, value, [float], self.name)
- for i, value in enumerate(stds):
- validator.check_value_type("stds[%d]" % i, value, [float], self.name)
- validator.check_equal_int(len(means), 4, "means len", self.name)
- validator.check_equal_int(len(stds), 4, "stds len", self.name)
-
- def infer_shape(self, anchor_box, groundtruth_box):
- validator.check('anchor_box shape[0]', anchor_box[0], 'groundtruth_box shape[0]', groundtruth_box[0], Rel.EQ,
- self.name)
- validator.check("anchor_box rank", len(anchor_box), "", 2, Rel.EQ, self.name)
- validator.check("groundtruth_box rank", len(groundtruth_box), "", 2, Rel.EQ, self.name)
- validator.check_equal_int(anchor_box[1], 4, 'anchor_box shape[1]', self.name)
- validator.check_equal_int(groundtruth_box[1], 4, 'groundtruth_box shape[1]', self.name)
- return anchor_box
-
- def infer_dtype(self, anchor_box, groundtruth_box):
- args = {"anchor_box": anchor_box, "groundtruth_box": groundtruth_box}
- validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name)
- return anchor_box
-
-
- class BoundingBoxDecode(PrimitiveWithInfer):
- """
- Decodes bounding boxes locations.
-
- Args:
- means (tuple): The means of deltas calculation. Default: (0.0, 0.0, 0.0, 0.0).
- stds (tuple): The standard deviations of deltas calculation. Default: (1.0, 1.0, 1.0, 1.0).
- max_shape (tuple): The max size limit for decoding box calculation.
- wh_ratio_clip (float): The limit of width and height ratio for decoding box calculation. Default: 0.016.
-
- Inputs:
- - **anchor_box** (Tensor) - Anchor boxes. The shape of `anchor_box` must be (n, 4).
- - **deltas** (Tensor) - Delta of boxes. Which has the same shape with `anchor_box`.
-
- Outputs:
- Tensor, decoded boxes.
-
- Raises:
- TypeError: If `means`, `stds` or `max_shape` is not a tuple.
- TypeError: If `wh_ratio_clip` is not a float.
- TypeError: If `anchor_box` or `deltas` is not a Tensor.
-
- Supported Platforms:
- ``Ascend`` ``GPU``
-
- Examples:
- >>> anchor_box = Tensor([[4, 1, 2, 1], [2, 2, 2, 3]], mindspore.float32)
- >>> deltas = Tensor([[3, 1, 2, 2], [1, 2, 1, 4]], mindspore.float32)
- >>> boundingbox_decode = ops.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0),
- ... max_shape=(768, 1280), wh_ratio_clip=0.016)
- >>> output = boundingbox_decode(anchor_box, deltas)
- >>> print(output)
- [[ 4.1953125 0. 0. 5.1953125]
- [ 2.140625 0. 3.859375 60.59375 ]]
-
- """
-
- @prim_attr_register
- def __init__(self, max_shape, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), wh_ratio_clip=0.016):
- validator.check_value_type('means', means, (tuple), self.name)
- validator.check_value_type('stds', stds, (tuple), self.name)
- for i, value in enumerate(means):
- validator.check_value_type("means[%d]" % i, value, [float], self.name)
- for i, value in enumerate(stds):
- validator.check_value_type("stds[%d]" % i, value, [float], self.name)
- validator.check_value_type('wh_ratio_clip', wh_ratio_clip, [float], self.name)
- validator.check_equal_int(len(means), 4, "means len", self.name)
- validator.check_equal_int(len(stds), 4, "stds len", self.name)
- if max_shape is not None:
- validator.check_value_type('max_shape', max_shape, [tuple], self.name)
- validator.check_equal_int(len(max_shape), 2, "max_shape len", self.name)
-
- def infer_shape(self, anchor_box, deltas):
- validator.check('anchor_box shape[0]', anchor_box[0], 'deltas shape[0]', deltas[0], Rel.EQ, self.name)
- validator.check("anchor_box rank", len(anchor_box), "", 2, Rel.EQ, self.name)
- validator.check("deltas rank", len(deltas), "", 2, Rel.EQ, self.name)
- validator.check_equal_int(anchor_box[1], 4, 'anchor_box shape[1]', self.name)
- validator.check_equal_int(deltas[1], 4, 'deltas shape[1]', self.name)
- return anchor_box
-
- def infer_dtype(self, anchor_box, deltas):
- args = {"anchor_box": anchor_box, "deltas": deltas}
- validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name)
- return anchor_box
-
-
- class CheckValid(PrimitiveWithInfer):
- """
- Checks bounding box.
-
- Checks whether the bounding box cross data and data border are valid.
-
- Inputs:
- - **bboxes** (Tensor) - Bounding boxes tensor with shape (N, 4). Data type must be float16 or float32.
- - **img_metas** (Tensor) - Raw image size information with the format of (height, width, ratio).
- Data type must be float16 or float32.
-
- Outputs:
- Tensor, with shape of (N,) and dtype of bool.
-
- Raises:
- TypeError: If `bboxes` or `img_metas` is not a Tensor.
- TypeError: If dtype of `bboxes` or `img_metas` is neither float16 nor float32.
-
- Supported Platforms:
- ``Ascend`` ``GPU``
-
- Examples:
- >>> import mindspore
- >>> import mindspore.nn as nn
- >>> import numpy as np
- >>> from mindspore import Tensor
- >>> from mindspore.ops import operations as ops
- >>> class Net(nn.Cell):
- ... def __init__(self):
- ... super(Net, self).__init__()
- ... self.check_valid = ops.CheckValid()
- ... def construct(self, x, y):
- ... valid_result = self.check_valid(x, y)
- ... return valid_result
- ...
- >>> bboxes = Tensor(np.linspace(0, 6, 12).reshape(3, 4), mindspore.float32)
- >>> img_metas = Tensor(np.array([2, 1, 3]), mindspore.float32)
- >>> net = Net()
- >>> output = net(bboxes, img_metas)
- >>> print(output)
- [ True False False]
- """
-
- @prim_attr_register
- def __init__(self):
- self.init_prim_io_names(inputs=['bboxes', 'img_metas'], outputs=['output'])
-
- def infer_shape(self, bboxes_shape, metas_shape):
- validator.check("bboxes rank", len(bboxes_shape), "", 2, Rel.EQ, self.name)
- validator.check("bboxes_shape[-1]", bboxes_shape[-1], "", 4, Rel.EQ, self.name)
- validator.check("img_metas rank", len(metas_shape), "", 1, Rel.EQ, self.name)
- validator.check("img_metas shape[0]", metas_shape[0], "", 3, Rel.EQ, self.name)
- return bboxes_shape[:-1]
-
- def infer_dtype(self, bboxes_type, metas_type):
- valid_type = [mstype.float32, mstype.float16, mstype.int16, mstype.uint8]
- validator.check_tensor_dtype_valid("bboxes_type", bboxes_type, valid_type, self.name)
- validator.check_tensor_dtype_valid("metas_type", metas_type, valid_type, self.name)
- return mstype.bool_
-
-
- class IOU(PrimitiveWithInfer):
- r"""
- Calculates intersection over union for boxes.
-
- Computes the intersection over union (IOU) or the intersection over foreground (IOF) based on the ground-truth and
- predicted regions.
-
- .. math::
- \text{IOU} = \frac{\text{Area of Overlap}}{\text{Area of Union}}
-
- \text{IOF} = \frac{\text{Area of Overlap}}{\text{Area of Ground Truth}}
-
- Args:
- mode (string): The mode is used to specify the calculation method,
- now supporting 'iou' (intersection over union) or 'iof'
- (intersection over foreground) mode. Default: 'iou'.
-
- Inputs:
- - **anchor_boxes** (Tensor) - Anchor boxes, tensor of shape (N, 4). "N" indicates the number of anchor boxes,
- and the value "4" refers to "x0", "y0", "x1", and "y1". Data type must be float16 or float32.
- - **gt_boxes** (Tensor) - Ground truth boxes, tensor of shape (M, 4). "M" indicates the number of ground
- truth boxes, and the value "4" refers to "x0", "y0", "x1", and "y1". Data type must be float16 or float32.
-
- Outputs:
- Tensor, the 'iou' values, tensor of shape (M, N), with the same data type as `anchor_boxes`.
-
- Raises:
- KeyError: When `mode` is not 'iou' or 'iof'.
-
- Supported Platforms:
- ``Ascend`` ``GPU`` ``CPU``
-
- Examples:
- >>> iou = ops.IOU()
- >>> anchor_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16)
- >>> gt_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16)
- >>> output = iou(anchor_boxes, gt_boxes)
- >>> print(output.shape)
- (3, 3)
- """
-
- @prim_attr_register
- def __init__(self, mode='iou'):
- if mode not in {'iou', 'iof'}:
- raise KeyError("Mode only support 'iou' or 'iof'.")
- self.init_prim_io_names(inputs=['anchor_boxes', 'gt_boxes'], outputs=['overlap'])
-
- def infer_shape(self, anchor_boxes, gt_boxes):
- validator.check_equal_int(gt_boxes[1], 4, 'gt_boxes shape[1]', self.name)
- validator.check_equal_int(anchor_boxes[1], 4, 'anchor_boxes shape[1]', self.name)
- validator.check_equal_int(len(anchor_boxes), 2, 'anchor_boxes rank', self.name)
- validator.check_equal_int(len(gt_boxes), 2, 'gt_boxes rank', self.name)
- iou = [gt_boxes[0], anchor_boxes[0]]
- return iou
-
- def infer_dtype(self, anchor_boxes, gt_boxes):
- valid_type = [mstype.float32, mstype.float16]
- validator.check_tensor_dtype_valid("anchor_boxes", anchor_boxes, valid_type, self.name)
- validator.check_tensor_dtype_valid("gt_boxes", gt_boxes, valid_type, self.name)
- return anchor_boxes
-
-
- class Partial(Primitive):
- """
- Makes a partial function instance, used for pynative mode.
-
- Inputs:
- - **args** (Union[FunctionType, Tensor]) - The function and bind arguments.
-
- Outputs:
- FunctionType, partial function binded with arguments.
- """
-
- # Side effect will propagated from the first argument to return value.
- side_effect_propagate = 1
-
- @prim_attr_register
- def __init__(self):
- self.add_prim_attr('side_effect_propagate', 1)
-
- def __call__(self, *args):
- func = args[0].__call__
- partial_func = functools.partial(func, *args[1:])
- return partial_func
-
-
- class Depend(Primitive):
- """
- Depend is used for processing dependency operations.
-
- In most scenarios, if operators have IO side effects or memory side effects,
- they will be executed according to the user's semantics. In some scenarios,
- if the two operators A and B have no order dependency, and A must be executed
- before B, we recommend using Depend to specify their execution order. The
- usage method is as follows::
-
- a = A(x) ---> a = A(x)
- b = B(y) ---> y = Depend(y, a)
- ---> b = B(y)
-
- Inputs:
- - **value** (Tensor) - the real value to return for depend operator.
- - **expr** (Expression) - the expression to execute with no outputs.
-
- Outputs:
- Tensor, the value passed by last operator.
-
- Supported Platforms:
- ``Ascend`` ``GPU`` ``CPU``
-
- Examples:
- >>> import numpy as np
- >>> import mindspore
- >>> import mindspore.nn as nn
- >>> import mindspore.ops.operations as P
- >>> from mindspore import Tensor
- >>> class Net(nn.Cell):
- ... def __init__(self):
- ... super(Net, self).__init__()
- ... self.softmax = P.Softmax()
- ... self.depend = P.Depend()
- ...
- ... def construct(self, x, y):
- ... mul = x * y
- ... y = self.depend(y, mul)
- ... ret = self.softmax(y)
- ... return ret
- ...
- >>> x = Tensor(np.ones([4, 5]), dtype=mindspore.float32)
- >>> y = Tensor(np.ones([4, 5]), dtype=mindspore.float32)
- >>> net = Net()
- >>> output = net(x, y)
- >>> print(output)
- [[0.2 0.2 0.2 0.2 0.2]
- [0.2 0.2 0.2 0.2 0.2]
- [0.2 0.2 0.2 0.2 0.2]
- [0.2 0.2 0.2 0.2 0.2]]
- """
-
- # Side effect will propagated from the first argument to return value.
- side_effect_propagate = 1
-
- @prim_attr_register
- def __init__(self):
- self.add_prim_attr('side_effect_propagate', 1)
-
- def __call__(self, value, expr):
- return value
-
- class UpdateState(Primitive):
- """
- UpdateState is used for update side-effect state.
-
- Inputs:
- - **value** (State) - the state value to be updated.
- - **expr** (Expression) - the expression to evaluate before state changes.
-
- Outputs:
- State, the updated state value.
- """
-
- @prim_attr_register
- def __init__(self):
- pass
-
- def __call__(self, state, expr):
- return state
-
- class CheckBprop(PrimitiveWithInfer):
- """
- Checks whether the data type and the shape of corresponding elements from tuples x and y are the same.
-
- Inputs:
- - **input_x** (tuple[Tensor]) - The `input_x` contains the outputs of bprop to be checked.
- - **input_y** (tuple[Tensor]) - The `input_y` contains the inputs of bprop to check against.
-
- Outputs:
- (tuple[Tensor]), the `input_x`,
- if data type and shape of corresponding elements from `input_x` and `input_y` are the same.
-
- Raises:
- TypeError: If `input_x` or `input_y` is not a Tensor.
-
- Examples:
- >>> input_x = (Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32),)
- >>> input_y = (Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32),)
- >>> out = ops.CheckBprop()(input_x, input_y)
- """
-
- @prim_attr_register
- def __init__(self, prim_to_check=""):
- """Initialize CheckBprop"""
- self.prim_to_check = prim_to_check
-
- def infer_shape(self, xshapes, yshapes):
- tips = f'Bprop of {self.prim_to_check}'
- validator.check_value_type('grads', xshapes, (tuple,), tips)
- validator.check_value_type('params', yshapes, (tuple,), tips)
- if len(xshapes) < len(yshapes):
- raise ValueError(f"{tips}, the size of output should be {len(yshapes)},"
- f" but got {len(xshapes)}.")
- checking_range = len(yshapes)
- for i in range(checking_range):
- xshape = xshapes[i]
- yshape = yshapes[i]
- if not xshape or not yshape:
- continue
- if xshape != yshape:
- raise ValueError(f"{tips}, the shape of {i}th output should be {yshape},"
- f" but got {xshape}.")
- return xshapes
-
- def infer_dtype(self, xdtypes, ydtypes):
- tips = f'Bprop of {self.prim_to_check}'
- validator.check_value_type('grads', xdtypes, (tuple,), tips)
- validator.check_value_type('params', ydtypes, (tuple,), tips)
- if len(xdtypes) < len(ydtypes):
- raise ValueError(f"{tips}, the size of output should be {len(ydtypes)},"
- f" but got {len(xdtypes)}.")
- checking_range = len(ydtypes)
- for i in range(checking_range):
- xdtype = xdtypes[i]
- ydtype = ydtypes[i]
- if isinstance(xdtype, mstype.anything_type) or isinstance(ydtype, mstype.anything_type):
- continue
- if isinstance(ydtype, mstype.function_type):
- if not isinstance(xdtype, mstype.env_type_type):
- raise TypeError(f"{tips}, the dtype of {i}th output should be {mstype.env_type_type},"
- f" but got {xdtype}.")
- continue
- if xdtype != ydtype:
- raise TypeError(f"{tips}, the dtype of {i}th output should be {ydtype},"
- f" but got {xdtype}.")
- return xdtypes
-
-
- class ConfusionMatrix(PrimitiveWithInfer):
- r"""
- Calculates the confusion matrix from labels and predictions.
-
- Args:
- num_classes (int): The num of classes.
- dtype (str): Data type of confusion matrix. Default: 'int32'.
-
- Inputs:
- - **labels** (Tensor) - real labels, tensor of 1-D. the dtype must be non-negative Integer.
- - **predictions** (Tensor) - the labels from prediction, tensor of 1-D.
- the shape same as `labels` and the dtype must be non-negative Integer.
- - **weights** (Tensor) - tensor of 1-D. the shape same as `predictions`.
-
- Outputs:
- Tensor, the confusion matrix, with shape (`num_classes`, `num_classes`).
-
- Raises:
- TypeError: If `num_classes` is not an int.
- TypeError: If `dtype` is not a str.
- TypeError: If `labels`, `predictions` or weight` is not a Tensor.
-
- Examples:
- >>> confusion_matrix = ops.ConfusionMatrix(4)
- >>> labels = Tensor([0, 1, 1, 3], mindspore.int32)
- >>> predictions = Tensor([1, 2, 1, 3], mindspore.int32)
- >>> output = confusion_matrix(labels, predictions)
- >>> print(output)
- [[0 1 0 0]
- [0 1 1 0]
- [0 0 0 0]
- [0 0 0 1]]
- """
-
- @prim_attr_register
- def __init__(self, num_classes, dtype="int32"):
- validator.check_value_type("num_classes", num_classes, [int], self.name)
- validator.check_value_type("dtype", dtype, [str], self.name)
-
- def infer_shape(self, labels, predictions, weights=None):
- validator.check('labels dimension', len(labels), '', 1, Rel.EQ, self.name)
- validator.check('labels shape', labels, 'predictions shape', predictions, Rel.EQ, self.name)
- if weights is not None:
- validator.check('labels shape', labels, 'weights shape', weights, Rel.EQ, self.name)
- ret = (self.num_classes, self.num_classes)
- return ret
-
- def infer_dtype(self, labels, predictions, weights=None):
- validator.check_subclass('labels', labels, mstype.tensor, self.name)
- validator.check_subclass('predictions', predictions, mstype.tensor, self.name)
- if weights is not None:
- validator.check_subclass('weights', weights, mstype.tensor, self.name)
- args = {"labels": labels, "predictions": predictions}
- validator.check_tensors_dtypes_same_and_valid(args, (mstype.number_type), self.name)
- return labels
-
-
- class PopulationCount(PrimitiveWithInfer):
- r"""
- Calculates population count.
-
- Inputs:
- - **input** (Tensor) - The data type must be int16 or uint16.
-
- Outputs:
- Tensor, with the same shape as the input.
-
- Raises:
- TypeError: If `input` is not a Tensor.
-
- Supported Platforms:
- ``Ascend``
-
- Examples:
- >>> population_count = ops.PopulationCount()
- >>> x_input = Tensor([0, 1, 3], mindspore.int16)
- >>> output = population_count(x_input)
- >>> print(output)
- [0 1 2]
- """
-
- @prim_attr_register
- def __init__(self):
- pass
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_dtype_valid("x", x_dtype, (mstype.int16, mstype.uint16,), self.name)
- return mstype.tensor_type(mstype.uint8)
-
-
- class Push(PrimitiveWithInfer):
- """
- Pushes the inputs of the corresponding optimizer to parameter server.
-
- Args:
- optim_type (string): The optimizer type. Default: 'ApplyMomentum'.
- only_shape_indices (list): The indices of input of which only shape
- will be pushed to parameter server. Default: None.
-
- Inputs:
- - **optim_inputs** (tuple) - The inputs for this kind of optimizer.
- - **optim_input_shapes** (tuple) - The shapes of the inputs.
-
- Outputs:
- Tensor, the key of the weight which needs to be updated.
- """
-
- @prim_attr_register
- def __init__(self, optim_type='ApplyMomentum', only_shape_indices=None):
- """Initialize Push"""
- self.add_prim_attr("primitive_target", "CPU")
- self.add_prim_attr("_side_effect", True)
- self.init_prim_io_names(inputs=['optim_inputs', 'optim_input_shapes'], outputs=['key'])
-
- def infer_shape(self, inputs, shapes):
- return [1]
-
- def infer_dtype(self, inputs, shapes):
- return mstype.uint64
-
-
- class Pull(PrimitiveWithInfer):
- """
- Pulls weight from parameter server.
-
- Inputs:
- - **key** (Tensor) - The key of the weight.
- - **weight** (Tensor) - The weight to be updated.
-
- Outputs:
- None.
- """
-
- @prim_attr_register
- def __init__(self):
- """Initialize Pull"""
- self.add_prim_attr("primitive_target", "CPU")
- self.init_prim_io_names(inputs=['key', 'weight'], outputs=['output'])
-
- def infer_shape(self, key_shape, weight_shape):
- return [1]
-
- def infer_dtype(self, key_dtype, weight_dtype):
- return mstype.float32
-
-
- class identity(Primitive):
- """
- Makes a identify primitive, used for pynative mode.
-
- Inputs:
- - **x** (Any) - identity input value.
-
- Outputs:
- The same as input.
- """
-
- # Side effect will propagated from the first argument to return value.
- side_effect_propagate = 1
-
- @prim_attr_register
- def __init__(self):
- self.add_prim_attr('side_effect_propagate', 1)
-
- def __call__(self, x):
- return x
|