| @@ -0,0 +1,75 @@ | |||||
| /** | |||||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/cpu/sparse_tensor_dense_matmul_cpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename I, typename T> | |||||
| void SparseTensorDenseMatmulCPUKernel<I, T>::InitKernel(const CNodePtr &kernel_node) { | |||||
| output_size_ = 1; | |||||
| auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||||
| for (auto &dim : output_shape) { | |||||
| output_size_ *= dim; | |||||
| } | |||||
| aValues_size_ = 1; | |||||
| auto aValues_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1); | |||||
| for (auto &dim : aValues_shape) { | |||||
| aValues_size_ *= dim; | |||||
| } | |||||
| b_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 3); | |||||
| output_shape_ = AnfAlgo::GetOutputDeviceShape(kernel_node, 0); | |||||
| } | |||||
| template <typename I, typename T> | |||||
| bool SparseTensorDenseMatmulCPUKernel<I, T>::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||||
| const std::vector<kernel::AddressPtr> &outputs) { | |||||
| auto a_indices = reinterpret_cast<I *>(inputs[0]->addr); | |||||
| auto a_values = reinterpret_cast<T *>(inputs[1]->addr); | |||||
| auto b = reinterpret_cast<T *>(inputs[3]->addr); | |||||
| auto out = reinterpret_cast<T *>(outputs[0]->addr); | |||||
| memset(out, 0, output_size_); | |||||
| const size_t nnz = aValues_size_; | |||||
| const size_t rhs_right = b_shape_[1]; | |||||
| const size_t lhs_right = b_shape_[0]; | |||||
| for (size_t i = 0; i < nnz; ++i) { | |||||
| const size_t m = a_indices[i * 2]; | |||||
| const size_t k = a_indices[i * 2 + 1]; | |||||
| if (k > lhs_right) { | |||||
| MS_LOG(ERROR) << "Invalid value: k: " << k << ", lhs_right: " << lhs_right; | |||||
| return false; | |||||
| } | |||||
| if (m > output_shape_[0]) { | |||||
| MS_LOG(ERROR) << "Invalid value: m: " << m << ", output_shape: " << output_shape_[0]; | |||||
| return false; | |||||
| } | |||||
| for (size_t n = 0; n < rhs_right; ++n) { | |||||
| const float b_value = b[k * lhs_right + n]; | |||||
| out[m * output_shape_[0] + n] += a_values[i] * b_value; | |||||
| } | |||||
| } | |||||
| return true; | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,243 @@ | |||||
| /** | |||||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_TENSOR_DENSE_MATMUL_CPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_TENSOR_DENSE_MATMUL_CPU_KERNEL_H_ | |||||
| #include <vector> | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename I, typename T> | |||||
| class SparseTensorDenseMatmulCPUKernel : public CPUKernel { | |||||
| public: | |||||
| SparseTensorDenseMatmulCPUKernel() = default; | |||||
| ~SparseTensorDenseMatmulCPUKernel() override = default; | |||||
| void InitKernel(const CNodePtr &kernel_node) override; | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) override; | |||||
| private: | |||||
| std::vector<size_t> output_shape_; | |||||
| std::vector<size_t> b_shape_; | |||||
| size_t output_size_; | |||||
| size_t aValues_size_; | |||||
| }; | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeBool) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeBool) | |||||
| .AddOutputAttr(kNumberTypeBool), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, bool); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt8) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt8) | |||||
| .AddOutputAttr(kNumberTypeUInt8), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, uint8_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt16) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt16) | |||||
| .AddOutputAttr(kNumberTypeUInt16), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, uint16_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt32) | |||||
| .AddOutputAttr(kNumberTypeUInt32), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, uint32_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt64) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt64) | |||||
| .AddOutputAttr(kNumberTypeUInt64), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, uint64_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt8) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt8) | |||||
| .AddOutputAttr(kNumberTypeInt8), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, int8_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt16) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt16) | |||||
| .AddOutputAttr(kNumberTypeInt16), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, int16_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddOutputAttr(kNumberTypeInt32), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, int32_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddOutputAttr(kNumberTypeInt64), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, int64_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, float); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeFloat64) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeFloat64) | |||||
| .AddOutputAttr(kNumberTypeFloat64), | |||||
| SparseTensorDenseMatmulCPUKernel, int32_t, double); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeBool) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeBool) | |||||
| .AddOutputAttr(kNumberTypeBool), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, bool); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeUInt8) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt8) | |||||
| .AddOutputAttr(kNumberTypeUInt8), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, uint8_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeUInt16) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt16) | |||||
| .AddOutputAttr(kNumberTypeUInt16), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, uint16_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeUInt32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt32) | |||||
| .AddOutputAttr(kNumberTypeUInt32), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, uint32_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeUInt64) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeUInt64) | |||||
| .AddOutputAttr(kNumberTypeUInt64), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, uint64_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeInt8) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt8) | |||||
| .AddOutputAttr(kNumberTypeInt8), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, int8_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeInt16) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt16) | |||||
| .AddOutputAttr(kNumberTypeInt16), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, int16_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddOutputAttr(kNumberTypeInt32), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, int32_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddOutputAttr(kNumberTypeInt64), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, int64_t); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, float); | |||||
| MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeInt64) | |||||
| .AddInputAttr(kNumberTypeFloat64) | |||||
| .AddInputAttr(kNumberTypeInt32) | |||||
| .AddInputAttr(kNumberTypeFloat64) | |||||
| .AddOutputAttr(kNumberTypeFloat64), | |||||
| SparseTensorDenseMatmulCPUKernel, int64_t, double); | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RMSPROP_CPU_KERNEL_H_ | |||||
| @@ -15,8 +15,9 @@ | |||||
| """ | """ | ||||
| Sparse related transformation. | Sparse related transformation. | ||||
| """ | """ | ||||
| from .sparse import SparseToDense | |||||
| from .sparse import (SparseToDense, SparseTensorDenseMatmul) | |||||
| __all__ = [ | __all__ = [ | ||||
| "SparseToDense", | "SparseToDense", | ||||
| "SparseTensorDenseMatmul", | |||||
| ] | ] | ||||
| @@ -1,4 +1,4 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # Copyright 2020-2021 Huawei Technologies Co., Ltd | |||||
| # | # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | # you may not use this file except in compliance with the License. | ||||
| @@ -52,3 +52,50 @@ class SparseToDense(Cell): | |||||
| return self.sparse_to_dense(sparse_tensor.indices, | return self.sparse_to_dense(sparse_tensor.indices, | ||||
| sparse_tensor.values, | sparse_tensor.values, | ||||
| sparse_tensor.dense_shape) | sparse_tensor.dense_shape) | ||||
| class SparseTensorDenseMatmul(Cell): | |||||
| """ | |||||
| Multiply SparseTensor(of rank 2) "A" by dense tensor. | |||||
| The shape of sparse tensor is :math:`(N, C)`, and the shape of dense tensor is :math:`(C, M)`, then the shape of | |||||
| output tensor is :math:`(N, M)`.The output data type is the same as "values". | |||||
| Args: | |||||
| - *adjoint_st** (Bool) - If true, SparseTensor is transposed before multiplication. Default: False. | |||||
| - *adjoint_dt** (Bool) - If true, DenseTensor is transposed before multiplication. Default: False. | |||||
| Inputs: | |||||
| - **indices** (Tensor) - The indices of sparse representation, support int32/int64. | |||||
| - **values** (Tensor) - Values corresponding to each row of indices. | |||||
| - **dense_shape** (tuple) - An int tuple which specifies the shape of dense tensor. The dense_shape is : | |||||
| math:`(N, C)`. If `adjoint_st` is True, its shape must be :math:`(N, C)` after transpose. | |||||
| - **dense** (Tensor) - Dense Matrix. The shape of the tensor is :math:`(C, M)`. If | |||||
| `adjoint_dt` is True, its shape must be :math:`(C, M)` after transpose. | |||||
| Returns: | |||||
| Tensor, the shape of tensor is :math:`(N, M)`.The output data type is the same as "values". | |||||
| Examples: | |||||
| >>> class NetSparseDenseMatmul(nn.Cell): | |||||
| ... def __init__(self): | |||||
| ... super(NetSparseDenseMatmul, self).__init__() | |||||
| ... self.matmul = nn.SparseTensorDenseMatmul() | |||||
| ... | |||||
| ... def construct(self, indices, values, dens_shape, dt): | |||||
| ... return self.matmul(indices, values, dens_shape, dt) | |||||
| ... | |||||
| >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) | |||||
| >>> values = Tensor([1, 2], dtype=ms.float32) | |||||
| >>> dense_shape = (3, 4) | |||||
| >>> dsMatrix = Tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype=ms.float32) | |||||
| >>> test_SparseDenseMatmul = NetSparseDenseMatmul() | |||||
| >>> out = test_SparseDenseMatmul(indices, values, dens_shape, dsMatrix) | |||||
| """ | |||||
| def __init__(self, adjoint_st=False, adjoint_dt=False): | |||||
| """Initialize SparseTensorDenseMatmul""" | |||||
| super(SparseTensorDenseMatmul, self).__init__() | |||||
| self.adjst = adjoint_st | |||||
| self.adjdt = adjoint_dt | |||||
| self.matmul = P.SparseTensorDenseMatmul(adjoint_st=self.adjst, adjoint_dt=self.adjdt) | |||||
| def construct(self, indices, values, dense_shape, dense): | |||||
| return self.matmul(indices, values, dense_shape, dense) | |||||
| @@ -94,7 +94,7 @@ from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg | |||||
| CusMatMulCubeDenseRight, | CusMatMulCubeDenseRight, | ||||
| CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky, CholeskyTrsm, DetTriangle, | CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky, CholeskyTrsm, DetTriangle, | ||||
| ProdForceSeA) | ProdForceSeA) | ||||
| from .sparse_ops import SparseToDense | |||||
| from .sparse_ops import (SparseToDense, SparseTensorDenseMatmul) | |||||
| from ._embedding_cache_ops import (CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx, | from ._embedding_cache_ops import (CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx, | ||||
| SubAndFilter, | SubAndFilter, | ||||
| MapUniform, DynamicAssign, PadAndShift) | MapUniform, DynamicAssign, PadAndShift) | ||||
| @@ -428,6 +428,7 @@ __all__ = [ | |||||
| "Pull", | "Pull", | ||||
| "ReLUV2", | "ReLUV2", | ||||
| "SparseToDense", | "SparseToDense", | ||||
| "SparseTensorDenseMatmul", | |||||
| "MatrixInverse", | "MatrixInverse", | ||||
| "Range", | "Range", | ||||
| "IndexAdd", | "IndexAdd", | ||||
| @@ -1,6 +1,6 @@ | |||||
| # coding: utf-8 | # coding: utf-8 | ||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # Copyright 2020-2021 Huawei Technologies Co., Ltd | |||||
| # | # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | # you may not use this file except in compliance with the License. | ||||
| @@ -53,3 +53,72 @@ class SparseToDense(PrimitiveWithInfer): | |||||
| 'dtype': values['dtype'], | 'dtype': values['dtype'], | ||||
| 'value': None} | 'value': None} | ||||
| return out | return out | ||||
| class SparseTensorDenseMatmul(PrimitiveWithInfer): | |||||
| """ | |||||
| Multiply SparseTensor(of rank 2) "A" by dense tensor. | |||||
| The shape of sparse tensor is :math:`(N, C)`, and the shape of dense tensor is :math:`(C, M)`, then the shape of | |||||
| output tensor is :math:`(N, M)`.The output data type is the same as "values". | |||||
| tensors. | |||||
| Args: | |||||
| - *adjoint_st** (Bool) - If true, SparseTensor is transposed before multiplication. Default: False. | |||||
| - *adjoint_dt** (Bool) - If true, DenseTensor is transposed before multiplication. Default: False. | |||||
| Inputs: | |||||
| - **indices** (Tensor) - The indices of sparse representation, support int32/int64. | |||||
| - **values** (Tensor) - Values corresponding to each row of indices. | |||||
| - **dense_shape** (tuple) - An int tuple which specifies the shape of dense tensor. The dense_shape is : | |||||
| math:`(N, C)`. If `adjoint_st` is True, its shape must be :math:`(N, C)` after transpose. | |||||
| - **dense** (Tensor) - Dense Matrix. The shape of the tensor is :math:`(C, M)`. If | |||||
| `adjoint_dt` is True, its shape must be :math:`(C, M)` after transpose. | |||||
| Outputs: | |||||
| Tensor, the shape of tensor is :math:`(N, M)`. The output data type is the same as "values". | |||||
| Raises: | |||||
| TypeError: If `indices` is neither int32 nor int64. | |||||
| TypeError: If 'values' is not boot, uint8-64, int8-64, float16-64. | |||||
| TypeError: If 'dense' is not boot, uint8-64, int8-64, float16-64. | |||||
| ValueError: If length of shape of `SparseTensor` or `DenseTensor` is not equal to 2 | |||||
| Supported Platforms: | |||||
| ``CPU`` | |||||
| Examples: | |||||
| >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32) | |||||
| >>> values = Tensor([1, 2], dtype=ms.float32) | |||||
| >>> dense_shape = (3, 4) | |||||
| >>> dsMatrix = Tensor([[1,1], [2,2], [3,3 ], [4, 4]], dtype=ms.float32) | |||||
| >>> out = ops.SparseTensorDenseMatmul(indices, values, dense_shape, dsMatrix) | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self, adjoint_st=False, adjoint_dt=False): | |||||
| """Initialize SparseTensorDenseMatmul""" | |||||
| self.adjoint_st = adjoint_st | |||||
| self.adjoint_dt = adjoint_dt | |||||
| self.init_prim_io_names(inputs=['indices', 'values', 'dense_shape', 'dense'], | |||||
| outputs=['output']) | |||||
| self.add_prim_attr('adjoint_st', self.adjoint_st) | |||||
| self.add_prim_attr('adjoint_dt', self.adjoint_dt) | |||||
| validator.check_value_type("adjoint_st", adjoint_st, [bool], self.name) | |||||
| validator.check_value_type("adjoint_dt", adjoint_dt, [bool], self.name) | |||||
| def __infer__(self, indices, values, dense_shape, dense): | |||||
| validator.check_tensor_dtype_valid('indices', indices['dtype'], [mstype.int32, mstype.int64], self.name) | |||||
| valid_types = mstype.number_type + (mstype.bool_,) | |||||
| args = {'values': values['dtype'], 'dense': dense['dtype']} | |||||
| validator.check_tensors_dtypes_same_and_valid(args, valid_types, self.name) | |||||
| a_shape = dense_shape['value'] | |||||
| b_shape = dense['shape'] | |||||
| if len(a_shape) != 2 or len(b_shape) != 2: | |||||
| raise ValueError('SparseTensorDenseMatmul SparseTensor, DenseTensor should have the same dimension size ' | |||||
| + f'and equal to 2, while SparseTensor size is ({len(a_shape)}) and DenseTensor size is ' | |||||
| + f'({len(b_shape)}).') | |||||
| out_shape = [] | |||||
| out_shape.append(a_shape[0]) | |||||
| out_shape.append(b_shape[1]) | |||||
| out = {'shape': tuple(out_shape), | |||||
| 'dtype': values['dtype'], | |||||
| 'value': None} | |||||
| return out | |||||
| @@ -0,0 +1,53 @@ | |||||
| # Copyright 2020-2021 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore as ms | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore import SparseTensor | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| class NetSparseDenseMatmul(nn.Cell): | |||||
| def __init__(self): | |||||
| super(NetSparseDenseMatmul, self).__init__() | |||||
| self.matmul = nn.SparseTensorDenseMatmul() | |||||
| def construct(self, indices, values, dens_shape, dt): | |||||
| return self.matmul(indices, values, dens_shape, dt) | |||||
| class NetSparseTensor(nn.Cell): | |||||
| def __init__(self, dense_shape): | |||||
| super(NetSparseTensor, self).__init__() | |||||
| self.dense_shape = dense_shape | |||||
| def construct(self, indices, values): | |||||
| x = SparseTensor(indices, values, self.dense_shape) | |||||
| return x.values, x.indices, x.dense_shape | |||||
| def test_sparse_tensor_dense_matmul(): | |||||
| indices = Tensor([[0, 1], [1, 1]]) | |||||
| values = Tensor([5, 5], dtype=ms.float32) | |||||
| dens_shape = (3, 3) | |||||
| spMatrix = np.array([[5, 0, 0], [0, 5, 0], [0, 0, 5]], dtype=np.float32) | |||||
| dsMatrix = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=np.float32) | |||||
| test_SparseDenseMatmul = NetSparseDenseMatmul() | |||||
| out_ms = test_SparseDenseMatmul(indices, values, dens_shape, Tensor(dsMatrix)) | |||||
| out_np = np.matmul(spMatrix, dsMatrix) | |||||
| error = np.ones(shape=dsMatrix.shape) * 10e-6 | |||||
| diff = out_ms.asnumpy() - out_np | |||||
| assert np.all(diff < error) | |||||