|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Sparse related tools."""
- from mindspore.ops import operations as P
- from ..cell import Cell
-
-
- class SparseToDense(Cell):
- """
- Convert a sparse tensor into dense.
-
- Not yet supported by any backend at the moment.
-
- Args:
- sparse_tensor (SparseTensor): the sparse tensor to convert.
-
- Returns:
- Tensor, the tensor converted.
-
- Examples:
- >>> class SparseToDenseCell(nn.Cell):
- ... def __init__(self, dense_shape):
- ... super(SparseToDenseCell, self).__init__()
- ... self.dense_shape = dense_shape
- ... self.sparse_to_dense = nn.SparseToDense()
- ... def construct(self, indices, values):
- ... sparse = SparseTensor(indices, values, self.dense_shape)
- ... return self.sparse_to_dense(sparse)
- ...
- >>> indices = Tensor([[0, 1], [1, 2]])
- >>> values = Tensor([1, 2], dtype=ms.float32)
- >>> dense_shape = (3, 4)
- >>> SparseToDenseCell(dense_shape)(indices, values)
- """
- def __init__(self):
- super(SparseToDense, self).__init__()
- self.sparse_to_dense = P.SparseToDense()
-
- def construct(self, sparse_tensor):
- return self.sparse_to_dense(sparse_tensor.indices,
- sparse_tensor.values,
- sparse_tensor.dense_shape)
-
- class SparseTensorDenseMatmul(Cell):
- """
- Multiply SparseTensor(of rank 2) "A" by dense tensor.
- The shape of sparse tensor is :math:`(N, C)`, and the shape of dense tensor is :math:`(C, M)`, then the shape of
- output tensor is :math:`(N, M)`.The output data type is the same as "values".
-
- Args:
- - *adjoint_st** (Bool) - If true, SparseTensor is transposed before multiplication. Default: False.
- - *adjoint_dt** (Bool) - If true, DenseTensor is transposed before multiplication. Default: False.
-
- Inputs:
- - **indices** (Tensor) - The indices of sparse representation, support int32/int64.
- - **values** (Tensor) - Values corresponding to each row of indices.
- - **dense_shape** (tuple) - An int tuple which specifies the shape of dense tensor. The dense_shape is :
- math:`(N, C)`. If `adjoint_st` is True, its shape must be :math:`(N, C)` after transpose.
- - **dense** (Tensor) - Dense Matrix. The shape of the tensor is :math:`(C, M)`. If
- `adjoint_dt` is True, its shape must be :math:`(C, M)` after transpose.
-
- Returns:
- Tensor, the shape of tensor is :math:`(N, M)`.The output data type is the same as "values".
-
- Examples:
- >>> class NetSparseDenseMatmul(nn.Cell):
- ... def __init__(self):
- ... super(NetSparseDenseMatmul, self).__init__()
- ... self.matmul = nn.SparseTensorDenseMatmul()
- ...
- ... def construct(self, indices, values, dens_shape, dt):
- ... return self.matmul(indices, values, dens_shape, dt)
- ...
- >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32)
- >>> values = Tensor([1, 2], dtype=ms.float32)
- >>> dense_shape = (3, 4)
- >>> dsMatrix = Tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype=ms.float32)
- >>> test_SparseDenseMatmul = NetSparseDenseMatmul()
- >>> out = test_SparseDenseMatmul(indices, values, dens_shape, dsMatrix)
- """
- def __init__(self, adjoint_st=False, adjoint_dt=False):
- """Initialize SparseTensorDenseMatmul"""
- super(SparseTensorDenseMatmul, self).__init__()
- self.adjst = adjoint_st
- self.adjdt = adjoint_dt
- self.matmul = P.SparseTensorDenseMatmul(adjoint_st=self.adjst, adjoint_dt=self.adjdt)
-
- def construct(self, indices, values, dense_shape, dense):
- return self.matmul(indices, values, dense_shape, dense)
|