From: @zhaojichen Reviewed-by: @c_34,@wuxuejian Signed-off-by: @c_34tags/v1.2.0-rc1
| @@ -52,13 +52,13 @@ Dataset used: | |||||
| 在通过官方网站安装MindSpore之后,你可以通过如下步骤开始训练以及评估: | 在通过官方网站安装MindSpore之后,你可以通过如下步骤开始训练以及评估: | ||||
| - runing on Ascend with default paramaters | |||||
| - running on Ascend with default parameters | |||||
| ```python | ```python | ||||
| # run training example | # run training example | ||||
| python train.py --device_id device_id | python train.py --device_id device_id | ||||
| # run evaluation example with default paramaters | |||||
| # run evaluation example with default parameters | |||||
| python eval.py --device_id device_id | python eval.py --device_id device_id | ||||
| ``` | ``` | ||||
| @@ -202,7 +202,7 @@ Dataset used: | |||||
| | outputs | probability | | outputs | probability | ||||
| | Loss | 0.038 | | Loss | 0.038 | ||||
| | Speed | 1pc: 564.652 ms/step; | | Speed | 1pc: 564.652 ms/step; | ||||
| | Scripts | [FCN script](https://gitee.com/mindspore/mindspore/tree/r1.0/model_zoo/official/cv/FCN) | |||||
| | Scripts | [FCN script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/FCN8s) | |||||
| ### Inference Performance | ### Inference Performance | ||||
| @@ -41,7 +41,7 @@ In the currently provided training script, the coco2017 data set is used as an e | |||||
| ````bash | ````bash | ||||
| wget http://images.cocodataset.org/zips/train2017.zip | wget http://images.cocodataset.org/zips/train2017.zip | ||||
| wget http://images.cocodataset.org/zips/val2017.zip | wget http://images.cocodataset.org/zips/val2017.zip | ||||
| wget http://images.cocodataset.org/annotations/annotations2017.zip | |||||
| wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip | |||||
| ```` | ```` | ||||
| - Create the mask dataset. | - Create the mask dataset. | ||||
| @@ -32,7 +32,7 @@ AutoDis leverages a set of meta-embeddings for each numerical field, which are s | |||||
| # [Dataset](#contents) | # [Dataset](#contents) | ||||
| - [1] A dataset [Criteo](https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz) used in Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017. | |||||
| - [1] A dataset Criteo used in Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017. | |||||
| # [Environment Requirements](#contents) | # [Environment Requirements](#contents) | ||||
| @@ -48,7 +48,7 @@ AutoDis leverages a set of meta-embeddings for each numerical field, which are s | |||||
| After installing MindSpore via the official website, you can start training and evaluation as follows: | After installing MindSpore via the official website, you can start training and evaluation as follows: | ||||
| - runing on Ascend | |||||
| - running on Ascend | |||||
| ```python | ```python | ||||
| # run training example | # run training example | ||||