diff --git a/model_zoo/official/cv/FCN8s/README.md b/model_zoo/official/cv/FCN8s/README.md index 837d8ab74d..e0dc23af10 100644 --- a/model_zoo/official/cv/FCN8s/README.md +++ b/model_zoo/official/cv/FCN8s/README.md @@ -52,13 +52,13 @@ Dataset used: 在通过官方网站安装MindSpore之后,你可以通过如下步骤开始训练以及评估: -- runing on Ascend with default paramaters +- running on Ascend with default parameters ```python # run training example python train.py --device_id device_id - # run evaluation example with default paramaters + # run evaluation example with default parameters python eval.py --device_id device_id ``` @@ -202,7 +202,7 @@ Dataset used: | outputs | probability | Loss | 0.038 | Speed | 1pc: 564.652 ms/step; -| Scripts | [FCN script](https://gitee.com/mindspore/mindspore/tree/r1.0/model_zoo/official/cv/FCN) +| Scripts | [FCN script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/FCN8s) ### Inference Performance diff --git a/model_zoo/official/cv/openpose/README.md b/model_zoo/official/cv/openpose/README.md index 04e73e0e97..68798789dd 100644 --- a/model_zoo/official/cv/openpose/README.md +++ b/model_zoo/official/cv/openpose/README.md @@ -41,7 +41,7 @@ In the currently provided training script, the coco2017 data set is used as an e ````bash wget http://images.cocodataset.org/zips/train2017.zip wget http://images.cocodataset.org/zips/val2017.zip - wget http://images.cocodataset.org/annotations/annotations2017.zip + wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip ```` - Create the mask dataset. diff --git a/model_zoo/research/recommend/autodis/README.md b/model_zoo/research/recommend/autodis/README.md index c35e569ecc..d904ea0909 100644 --- a/model_zoo/research/recommend/autodis/README.md +++ b/model_zoo/research/recommend/autodis/README.md @@ -32,7 +32,7 @@ AutoDis leverages a set of meta-embeddings for each numerical field, which are s # [Dataset](#contents) -- [1] A dataset [Criteo](https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz) used in Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017. +- [1] A dataset Criteo used in Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017. # [Environment Requirements](#contents) @@ -48,7 +48,7 @@ AutoDis leverages a set of meta-embeddings for each numerical field, which are s After installing MindSpore via the official website, you can start training and evaluation as follows: -- runing on Ascend +- running on Ascend ```python # run training example