Browse Source

!1564 fixed doc for ArgMaxWithValue

Merge pull request !1564 from jiangjinsheng/issue_doc
tags/v0.5.0-beta
mindspore-ci-bot Gitee 5 years ago
parent
commit
630e1fdf45
2 changed files with 4 additions and 3 deletions
  1. +4
    -2
      mindspore/ops/operations/array_ops.py
  2. +0
    -1
      mindspore/ops/operations/nn_ops.py

+ 4
- 2
mindspore/ops/operations/array_ops.py View File

@@ -1105,9 +1105,11 @@ class ArgMaxWithValue(PrimitiveWithInfer):
:math:`(x_1, x_2, ..., x_N)`.

Outputs:
Tensor, corresponding index and maximum value of input tensor. If `keep_dims` is true, the output tensors shape
tuple(Tensor), tuple of 2 tensors, corresponding index and maximum value of input tensor.
- index (Tensor) - The index for maximum value of input tensor. If `keep_dims` is true, the output tensors shape
is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`. Else, the shape is
:math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
- output_x (Tensor) - The maximum value of input tensor, the shape same as index.

Examples:
>>> input_x = Tensor(np.random.rand(5))
@@ -2161,7 +2163,7 @@ class ScatterMax(PrimitiveWithInfer):
Tensor, has the same shape and data type as `input_x`.

Examples:
>>> input_x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32)
>>> input_x = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32), name="input_x")
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
>>> update = Tensor(np.ones([2, 2, 3]) * 88, mindspore.float32)
>>> scatter_max = P.ScatterMax()


+ 0
- 1
mindspore/ops/operations/nn_ops.py View File

@@ -620,7 +620,6 @@ class BatchNorm(PrimitiveWithInfer):
- **updated_bias** (Tensor) - Tensor of shape :math:`(C,)`.
- **reserve_space_1** (Tensor) - Tensor of shape :math:`(C,)`.
- **reserve_space_2** (Tensor) - Tensor of shape :math:`(C,)`.
- **reserve_space_3** (Tensor) - Tensor of shape :math:`(C,)`.

Examples:
>>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32)


Loading…
Cancel
Save