diff --git a/mindspore/ops/operations/array_ops.py b/mindspore/ops/operations/array_ops.py index 16f5121e65..74fd3c3b3e 100644 --- a/mindspore/ops/operations/array_ops.py +++ b/mindspore/ops/operations/array_ops.py @@ -1105,9 +1105,11 @@ class ArgMaxWithValue(PrimitiveWithInfer): :math:`(x_1, x_2, ..., x_N)`. Outputs: - Tensor, corresponding index and maximum value of input tensor. If `keep_dims` is true, the output tensors shape + tuple(Tensor), tuple of 2 tensors, corresponding index and maximum value of input tensor. + - index (Tensor) - The index for maximum value of input tensor. If `keep_dims` is true, the output tensors shape is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`. Else, the shape is :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`. + - output_x (Tensor) - The maximum value of input tensor, the shape same as index. Examples: >>> input_x = Tensor(np.random.rand(5)) @@ -2161,7 +2163,7 @@ class ScatterMax(PrimitiveWithInfer): Tensor, has the same shape and data type as `input_x`. Examples: - >>> input_x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32) + >>> input_x = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32), name="input_x") >>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32) >>> update = Tensor(np.ones([2, 2, 3]) * 88, mindspore.float32) >>> scatter_max = P.ScatterMax() diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index b36c65cf82..1f0a1ef960 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -620,7 +620,6 @@ class BatchNorm(PrimitiveWithInfer): - **updated_bias** (Tensor) - Tensor of shape :math:`(C,)`. - **reserve_space_1** (Tensor) - Tensor of shape :math:`(C,)`. - **reserve_space_2** (Tensor) - Tensor of shape :math:`(C,)`. - - **reserve_space_3** (Tensor) - Tensor of shape :math:`(C,)`. Examples: >>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32)