| @@ -44,6 +44,7 @@ if __name__ == "__main__": | |||||
| parser = argparse.ArgumentParser(description='MindSpore AlexNet Example') | parser = argparse.ArgumentParser(description='MindSpore AlexNet Example') | ||||
| parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'], | parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'], | ||||
| help='dataset name.') | help='dataset name.') | ||||
| parser.add_argument('--sink_size', type=int, default=-1, help='control the amount of data in each sink') | |||||
| parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], | parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], | ||||
| help='device where the code will be implemented (default: Ascend)') | help='device where the code will be implemented (default: Ascend)') | ||||
| parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved') | parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved') | ||||
| @@ -98,17 +99,16 @@ if __name__ == "__main__": | |||||
| loss_scale_manager = None | loss_scale_manager = None | ||||
| metrics = None | metrics = None | ||||
| step_per_epoch = ds_train.get_dataset_size() if args.sink_size == -1 else args.sink_size | |||||
| if args.dataset_name == 'cifar10': | if args.dataset_name == 'cifar10': | ||||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") | loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") | ||||
| lr = Tensor(get_lr_cifar10(0, cfg.learning_rate, cfg.epoch_size, ds_train.get_dataset_size())) | |||||
| lr = Tensor(get_lr_cifar10(0, cfg.learning_rate, cfg.epoch_size, step_per_epoch)) | |||||
| opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) | opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum) | ||||
| metrics = {"Accuracy": Accuracy()} | metrics = {"Accuracy": Accuracy()} | ||||
| elif args.dataset_name == 'imagenet': | elif args.dataset_name == 'imagenet': | ||||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") | loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") | ||||
| lr = Tensor(get_lr_imagenet(cfg, ds_train.get_dataset_size())) | |||||
| lr = Tensor(get_lr_imagenet(cfg, step_per_epoch)) | |||||
| opt = nn.Momentum(params=get_param_groups(network), | opt = nn.Momentum(params=get_param_groups(network), | ||||
| learning_rate=lr, | learning_rate=lr, | ||||
| momentum=cfg.momentum, | momentum=cfg.momentum, | ||||
| @@ -137,11 +137,11 @@ if __name__ == "__main__": | |||||
| else: | else: | ||||
| ckpt_save_dir = args.ckpt_path | ckpt_save_dir = args.ckpt_path | ||||
| time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) | |||||
| config_ck = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), | |||||
| time_cb = TimeMonitor(data_size=step_per_epoch) | |||||
| config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, | |||||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | keep_checkpoint_max=cfg.keep_checkpoint_max) | ||||
| ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=ckpt_save_dir, config=config_ck) | ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=ckpt_save_dir, config=config_ck) | ||||
| print("============== Starting Training ==============") | print("============== Starting Training ==============") | ||||
| model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], | model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()], | ||||
| dataset_sink_mode=args.dataset_sink_mode) | |||||
| dataset_sink_mode=args.dataset_sink_mode, sink_size=args.sink_size) | |||||