|
|
@@ -16,6 +16,7 @@ |
|
|
"""train bert network without lossscale""" |
|
|
"""train bert network without lossscale""" |
|
|
|
|
|
|
|
|
import os |
|
|
import os |
|
|
|
|
|
import time |
|
|
import pytest |
|
|
import pytest |
|
|
import numpy as np |
|
|
import numpy as np |
|
|
|
|
|
|
|
|
@@ -85,14 +86,23 @@ def get_config(version='base', batch_size=1): |
|
|
return bert_config |
|
|
return bert_config |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def me_de_train_dataset(): |
|
|
|
|
|
|
|
|
def me_de_train_dataset(sink_mode=False): |
|
|
"""test me de train dataset""" |
|
|
"""test me de train dataset""" |
|
|
# apply repeat operations |
|
|
# apply repeat operations |
|
|
repeat_count = 1 |
|
|
repeat_count = 1 |
|
|
|
|
|
batch_size = 16 |
|
|
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", |
|
|
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", |
|
|
"next_sentence_labels", "masked_lm_positions", |
|
|
"next_sentence_labels", "masked_lm_positions", |
|
|
"masked_lm_ids", "masked_lm_weights"], shuffle=False) |
|
|
"masked_lm_ids", "masked_lm_weights"], shuffle=False) |
|
|
type_cast_op = C.TypeCast(mstype.int32) |
|
|
type_cast_op = C.TypeCast(mstype.int32) |
|
|
|
|
|
new_repeat_count = repeat_count |
|
|
|
|
|
if sink_mode: |
|
|
|
|
|
repeat_count = 30 |
|
|
|
|
|
sink_steps = 100 |
|
|
|
|
|
ori_dataaet_size = ds.get_dataset_size() |
|
|
|
|
|
new_size = sink_steps * batch_size |
|
|
|
|
|
ds.set_dataset_size(new_size) |
|
|
|
|
|
new_repeat_count = int(repeat_count * ori_dataaet_size // ds.get_dataset_size()) |
|
|
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) |
|
|
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) |
|
|
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) |
|
|
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) |
|
|
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) |
|
|
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) |
|
|
@@ -100,10 +110,11 @@ def me_de_train_dataset(): |
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op) |
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op) |
|
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op) |
|
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op) |
|
|
# apply batch operations |
|
|
# apply batch operations |
|
|
batch_size = int(os.getenv('BATCH_SIZE', '16')) |
|
|
|
|
|
ds = ds.batch(batch_size, drop_remainder=True) |
|
|
ds = ds.batch(batch_size, drop_remainder=True) |
|
|
ds = ds.repeat(repeat_count) |
|
|
ds = ds.repeat(repeat_count) |
|
|
return ds |
|
|
|
|
|
|
|
|
logger.info("data size: {}".format(ds.get_dataset_size())) |
|
|
|
|
|
logger.info("repeat_count: {}".format(ds.get_repeat_count())) |
|
|
|
|
|
return ds, new_repeat_count |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def weight_variable(shape): |
|
|
def weight_variable(shape): |
|
|
@@ -127,20 +138,34 @@ class ModelCallback(Callback): |
|
|
self.lossscale_list.append(cb_params.net_outputs[2].asnumpy()) |
|
|
self.lossscale_list.append(cb_params.net_outputs[2].asnumpy()) |
|
|
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs))) |
|
|
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs))) |
|
|
|
|
|
|
|
|
|
|
|
class TimeMonitor(Callback): |
|
|
|
|
|
"""Time Monitor.""" |
|
|
|
|
|
def __init__(self, data_size): |
|
|
|
|
|
super(TimeMonitor, self).__init__() |
|
|
|
|
|
self.data_size = data_size |
|
|
|
|
|
self.epoch_mseconds_list = [] |
|
|
|
|
|
self.per_step_mseconds_list = [] |
|
|
|
|
|
def epoch_begin(self, run_context): |
|
|
|
|
|
self.epoch_time = time.time() |
|
|
|
|
|
|
|
|
|
|
|
def epoch_end(self, run_context): |
|
|
|
|
|
epoch_mseconds = (time.time() - self.epoch_time) * 1000 |
|
|
|
|
|
self.epoch_mseconds_list.append(epoch_mseconds) |
|
|
|
|
|
self.per_step_mseconds_list.append(epoch_mseconds / self.data_size) |
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
@pytest.mark.level0 |
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
@pytest.mark.env_onecard |
|
|
@pytest.mark.env_onecard |
|
|
def test_bert_tdt(): |
|
|
|
|
|
"""test bert tdt""" |
|
|
|
|
|
|
|
|
def test_bert_percision(): |
|
|
|
|
|
"""test bert percision""" |
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) |
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) |
|
|
ds = me_de_train_dataset() |
|
|
|
|
|
|
|
|
ds, new_repeat_count = me_de_train_dataset() |
|
|
version = os.getenv('VERSION', 'large') |
|
|
version = os.getenv('VERSION', 'large') |
|
|
batch_size = int(os.getenv('BATCH_SIZE', '16')) |
|
|
|
|
|
|
|
|
batch_size = 16 |
|
|
config = get_config(version=version, batch_size=batch_size) |
|
|
config = get_config(version=version, batch_size=batch_size) |
|
|
netwithloss = BertNetworkWithLoss(config, True) |
|
|
netwithloss = BertNetworkWithLoss(config, True) |
|
|
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*ds.get_repeat_count(), |
|
|
|
|
|
|
|
|
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*new_repeat_count, |
|
|
start_learning_rate=5e-5, end_learning_rate=1e-9, |
|
|
start_learning_rate=5e-5, end_learning_rate=1e-9, |
|
|
power=10.0, warmup_steps=0, weight_decay=0.01) |
|
|
power=10.0, warmup_steps=0, weight_decay=0.01) |
|
|
scale_window = 3 |
|
|
scale_window = 3 |
|
|
@@ -169,10 +194,12 @@ def test_bert_tdt(): |
|
|
else: |
|
|
else: |
|
|
logger.info("***************** BERT param name is 3 {}".format(name)) |
|
|
logger.info("***************** BERT param name is 3 {}".format(name)) |
|
|
param.default_input = weight_variable(value.asnumpy().shape) |
|
|
param.default_input = weight_variable(value.asnumpy().shape) |
|
|
model.train(ds.get_repeat_count(), ds, callbacks=callback, dataset_sink_mode=False) |
|
|
|
|
|
|
|
|
model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=False) |
|
|
|
|
|
|
|
|
# assertion occurs while the loss value, overflow state or loss_scale value is wrong |
|
|
# assertion occurs while the loss value, overflow state or loss_scale value is wrong |
|
|
loss_value = np.array(callback.loss_list) |
|
|
loss_value = np.array(callback.loss_list) |
|
|
|
|
|
assert np.allclose(loss_value[0], 12.207198, 0, 0.000001) |
|
|
|
|
|
|
|
|
expect_loss_value = [12.207198, 11.980881, 11.984844, 11.879381, 11.832978, 12.411333, 12.009284, |
|
|
expect_loss_value = [12.207198, 11.980881, 11.984844, 11.879381, 11.832978, 12.411333, 12.009284, |
|
|
12.621277, 12.223178, 12.427385] |
|
|
12.621277, 12.223178, 12.427385] |
|
|
print("loss value: {}".format(loss_value)) |
|
|
print("loss value: {}".format(loss_value)) |
|
|
@@ -188,6 +215,73 @@ def test_bert_tdt(): |
|
|
print("loss scale: {}".format(loss_scale)) |
|
|
print("loss scale: {}".format(loss_scale)) |
|
|
assert np.allclose(loss_scale, expect_loss_scale, 0, 0) |
|
|
assert np.allclose(loss_scale, expect_loss_scale, 0, 0) |
|
|
|
|
|
|
|
|
|
|
|
def test_bert_performance(): |
|
|
|
|
|
"""test bert performance""" |
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) |
|
|
|
|
|
ds, new_repeat_count = me_de_train_dataset(sink_mode=True) |
|
|
|
|
|
version = os.getenv('VERSION', 'large') |
|
|
|
|
|
batch_size = 16 |
|
|
|
|
|
config = get_config(version=version, batch_size=batch_size) |
|
|
|
|
|
netwithloss = BertNetworkWithLoss(config, True) |
|
|
|
|
|
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*new_repeat_count, |
|
|
|
|
|
start_learning_rate=5e-5, end_learning_rate=1e-9, |
|
|
|
|
|
power=10.0, warmup_steps=0, weight_decay=0.01) |
|
|
|
|
|
scale_window = 3 |
|
|
|
|
|
scale_manager = DynamicLossScaleManager(2 ** 16, 2, scale_window) |
|
|
|
|
|
netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer, |
|
|
|
|
|
scale_update_cell=scale_manager.get_update_cell()) |
|
|
|
|
|
netwithgrads.set_train(True) |
|
|
|
|
|
model = Model(netwithgrads) |
|
|
|
|
|
callback = ModelCallback() |
|
|
|
|
|
params = netwithloss.trainable_params() |
|
|
|
|
|
for param in params: |
|
|
|
|
|
param.init_data() |
|
|
|
|
|
value = param.default_input |
|
|
|
|
|
name = param.name |
|
|
|
|
|
if isinstance(value, Tensor): |
|
|
|
|
|
if name.split('.')[-1] in ['weight']: |
|
|
|
|
|
if name.split('.')[-3] in ['cls2']: |
|
|
|
|
|
logger.info("***************** BERT param name is 1 {}".format(name)) |
|
|
|
|
|
param.default_input = weight_variable(value.asnumpy().shape) |
|
|
|
|
|
else: |
|
|
|
|
|
logger.info("***************** BERT param name is 2 {}".format(name)) |
|
|
|
|
|
tempshape = value.asnumpy().shape |
|
|
|
|
|
shape = (tempshape[1], tempshape[0]) |
|
|
|
|
|
weight_value = weight_variable(shape).asnumpy() |
|
|
|
|
|
param.default_input = Tensor(np.transpose(weight_value, [1, 0])) |
|
|
|
|
|
else: |
|
|
|
|
|
logger.info("***************** BERT param name is 3 {}".format(name)) |
|
|
|
|
|
param.default_input = weight_variable(value.asnumpy().shape) |
|
|
|
|
|
time_monitor_callback = TimeMonitor(ds.get_dataset_size()) |
|
|
|
|
|
model.train(new_repeat_count, ds, callbacks=[time_monitor_callback, callback], |
|
|
|
|
|
dataset_sink_mode=True) |
|
|
|
|
|
|
|
|
|
|
|
# assertion occurs while the loss value, overflow state or loss_scale value is wrong |
|
|
|
|
|
loss_value = np.array(callback.loss_list) |
|
|
|
|
|
expect_loss_value = [10.237753, 10.213153, 10.212972] |
|
|
|
|
|
print("loss value: {}".format(loss_value)) |
|
|
|
|
|
assert np.allclose(loss_value, expect_loss_value, 0, 0.0005) |
|
|
|
|
|
|
|
|
|
|
|
overflow = np.array(callback.overflow_list) |
|
|
|
|
|
expect_overflow = [False, False, False] |
|
|
|
|
|
print("overflow: {}".format(overflow)) |
|
|
|
|
|
assert (overflow == expect_overflow).all() |
|
|
|
|
|
|
|
|
|
|
|
loss_scale = np.array(callback.lossscale_list) |
|
|
|
|
|
expect_loss_scale = [16384.0, 16384.0, 16384.0] |
|
|
|
|
|
print("loss scale: {}".format(loss_scale)) |
|
|
|
|
|
assert np.allclose(loss_scale, expect_loss_scale, 0, 0) |
|
|
|
|
|
|
|
|
|
|
|
epoch_mseconds = np.array(time_monitor_callback.epoch_mseconds_list)[2] |
|
|
|
|
|
expect_epoch_mseconds = 1726 |
|
|
|
|
|
print("epoch mseconds: {}".format(epoch_mseconds)) |
|
|
|
|
|
assert epoch_mseconds <= expect_epoch_mseconds + 5 |
|
|
|
|
|
|
|
|
|
|
|
per_step_mseconds = np.array(time_monitor_callback.per_step_mseconds_list)[2] |
|
|
|
|
|
expect_per_step_mseconds = 17 |
|
|
|
|
|
print("per step mseconds: {}".format(per_step_mseconds)) |
|
|
|
|
|
assert per_step_mseconds <= expect_per_step_mseconds + 1 |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
if __name__ == '__main__': |
|
|
test_bert_tdt() |
|
|
|
|
|
|
|
|
test_bert_percision() |
|
|
|
|
|
test_bert_performance() |