| @@ -16,6 +16,7 @@ | |||
| """train bert network without lossscale""" | |||
| import os | |||
| import time | |||
| import pytest | |||
| import numpy as np | |||
| @@ -85,14 +86,23 @@ def get_config(version='base', batch_size=1): | |||
| return bert_config | |||
| def me_de_train_dataset(): | |||
| def me_de_train_dataset(sink_mode=False): | |||
| """test me de train dataset""" | |||
| # apply repeat operations | |||
| repeat_count = 1 | |||
| batch_size = 16 | |||
| ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", | |||
| "next_sentence_labels", "masked_lm_positions", | |||
| "masked_lm_ids", "masked_lm_weights"], shuffle=False) | |||
| type_cast_op = C.TypeCast(mstype.int32) | |||
| new_repeat_count = repeat_count | |||
| if sink_mode: | |||
| repeat_count = 30 | |||
| sink_steps = 100 | |||
| ori_dataaet_size = ds.get_dataset_size() | |||
| new_size = sink_steps * batch_size | |||
| ds.set_dataset_size(new_size) | |||
| new_repeat_count = int(repeat_count * ori_dataaet_size // ds.get_dataset_size()) | |||
| ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) | |||
| ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) | |||
| ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) | |||
| @@ -100,10 +110,11 @@ def me_de_train_dataset(): | |||
| ds = ds.map(input_columns="input_mask", operations=type_cast_op) | |||
| ds = ds.map(input_columns="input_ids", operations=type_cast_op) | |||
| # apply batch operations | |||
| batch_size = int(os.getenv('BATCH_SIZE', '16')) | |||
| ds = ds.batch(batch_size, drop_remainder=True) | |||
| ds = ds.repeat(repeat_count) | |||
| return ds | |||
| logger.info("data size: {}".format(ds.get_dataset_size())) | |||
| logger.info("repeat_count: {}".format(ds.get_repeat_count())) | |||
| return ds, new_repeat_count | |||
| def weight_variable(shape): | |||
| @@ -127,20 +138,34 @@ class ModelCallback(Callback): | |||
| self.lossscale_list.append(cb_params.net_outputs[2].asnumpy()) | |||
| print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs))) | |||
| class TimeMonitor(Callback): | |||
| """Time Monitor.""" | |||
| def __init__(self, data_size): | |||
| super(TimeMonitor, self).__init__() | |||
| self.data_size = data_size | |||
| self.epoch_mseconds_list = [] | |||
| self.per_step_mseconds_list = [] | |||
| def epoch_begin(self, run_context): | |||
| self.epoch_time = time.time() | |||
| def epoch_end(self, run_context): | |||
| epoch_mseconds = (time.time() - self.epoch_time) * 1000 | |||
| self.epoch_mseconds_list.append(epoch_mseconds) | |||
| self.per_step_mseconds_list.append(epoch_mseconds / self.data_size) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_bert_tdt(): | |||
| """test bert tdt""" | |||
| def test_bert_percision(): | |||
| """test bert percision""" | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) | |||
| ds = me_de_train_dataset() | |||
| ds, new_repeat_count = me_de_train_dataset() | |||
| version = os.getenv('VERSION', 'large') | |||
| batch_size = int(os.getenv('BATCH_SIZE', '16')) | |||
| batch_size = 16 | |||
| config = get_config(version=version, batch_size=batch_size) | |||
| netwithloss = BertNetworkWithLoss(config, True) | |||
| optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*ds.get_repeat_count(), | |||
| optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*new_repeat_count, | |||
| start_learning_rate=5e-5, end_learning_rate=1e-9, | |||
| power=10.0, warmup_steps=0, weight_decay=0.01) | |||
| scale_window = 3 | |||
| @@ -169,10 +194,12 @@ def test_bert_tdt(): | |||
| else: | |||
| logger.info("***************** BERT param name is 3 {}".format(name)) | |||
| param.default_input = weight_variable(value.asnumpy().shape) | |||
| model.train(ds.get_repeat_count(), ds, callbacks=callback, dataset_sink_mode=False) | |||
| model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=False) | |||
| # assertion occurs while the loss value, overflow state or loss_scale value is wrong | |||
| loss_value = np.array(callback.loss_list) | |||
| assert np.allclose(loss_value[0], 12.207198, 0, 0.000001) | |||
| expect_loss_value = [12.207198, 11.980881, 11.984844, 11.879381, 11.832978, 12.411333, 12.009284, | |||
| 12.621277, 12.223178, 12.427385] | |||
| print("loss value: {}".format(loss_value)) | |||
| @@ -188,6 +215,73 @@ def test_bert_tdt(): | |||
| print("loss scale: {}".format(loss_scale)) | |||
| assert np.allclose(loss_scale, expect_loss_scale, 0, 0) | |||
| def test_bert_performance(): | |||
| """test bert performance""" | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) | |||
| ds, new_repeat_count = me_de_train_dataset(sink_mode=True) | |||
| version = os.getenv('VERSION', 'large') | |||
| batch_size = 16 | |||
| config = get_config(version=version, batch_size=batch_size) | |||
| netwithloss = BertNetworkWithLoss(config, True) | |||
| optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*new_repeat_count, | |||
| start_learning_rate=5e-5, end_learning_rate=1e-9, | |||
| power=10.0, warmup_steps=0, weight_decay=0.01) | |||
| scale_window = 3 | |||
| scale_manager = DynamicLossScaleManager(2 ** 16, 2, scale_window) | |||
| netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer, | |||
| scale_update_cell=scale_manager.get_update_cell()) | |||
| netwithgrads.set_train(True) | |||
| model = Model(netwithgrads) | |||
| callback = ModelCallback() | |||
| params = netwithloss.trainable_params() | |||
| for param in params: | |||
| param.init_data() | |||
| value = param.default_input | |||
| name = param.name | |||
| if isinstance(value, Tensor): | |||
| if name.split('.')[-1] in ['weight']: | |||
| if name.split('.')[-3] in ['cls2']: | |||
| logger.info("***************** BERT param name is 1 {}".format(name)) | |||
| param.default_input = weight_variable(value.asnumpy().shape) | |||
| else: | |||
| logger.info("***************** BERT param name is 2 {}".format(name)) | |||
| tempshape = value.asnumpy().shape | |||
| shape = (tempshape[1], tempshape[0]) | |||
| weight_value = weight_variable(shape).asnumpy() | |||
| param.default_input = Tensor(np.transpose(weight_value, [1, 0])) | |||
| else: | |||
| logger.info("***************** BERT param name is 3 {}".format(name)) | |||
| param.default_input = weight_variable(value.asnumpy().shape) | |||
| time_monitor_callback = TimeMonitor(ds.get_dataset_size()) | |||
| model.train(new_repeat_count, ds, callbacks=[time_monitor_callback, callback], | |||
| dataset_sink_mode=True) | |||
| # assertion occurs while the loss value, overflow state or loss_scale value is wrong | |||
| loss_value = np.array(callback.loss_list) | |||
| expect_loss_value = [10.237753, 10.213153, 10.212972] | |||
| print("loss value: {}".format(loss_value)) | |||
| assert np.allclose(loss_value, expect_loss_value, 0, 0.0005) | |||
| overflow = np.array(callback.overflow_list) | |||
| expect_overflow = [False, False, False] | |||
| print("overflow: {}".format(overflow)) | |||
| assert (overflow == expect_overflow).all() | |||
| loss_scale = np.array(callback.lossscale_list) | |||
| expect_loss_scale = [16384.0, 16384.0, 16384.0] | |||
| print("loss scale: {}".format(loss_scale)) | |||
| assert np.allclose(loss_scale, expect_loss_scale, 0, 0) | |||
| epoch_mseconds = np.array(time_monitor_callback.epoch_mseconds_list)[2] | |||
| expect_epoch_mseconds = 1726 | |||
| print("epoch mseconds: {}".format(epoch_mseconds)) | |||
| assert epoch_mseconds <= expect_epoch_mseconds + 5 | |||
| per_step_mseconds = np.array(time_monitor_callback.per_step_mseconds_list)[2] | |||
| expect_per_step_mseconds = 17 | |||
| print("per step mseconds: {}".format(per_step_mseconds)) | |||
| assert per_step_mseconds <= expect_per_step_mseconds + 1 | |||
| if __name__ == '__main__': | |||
| test_bert_tdt() | |||
| test_bert_percision() | |||
| test_bert_performance() | |||