Merge pull request !3803 from baihuawei/losstags/v0.7.0-beta
| @@ -0,0 +1,26 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/gpu/nn/kl_div_loss_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| KLDivLoss, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| KLDivLossGpuKernel, float) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,86 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_KL_DIV_GPU_KERNEL_H | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_KL_DIV_GPU_KERNEL_H | |||
| #include <vector> | |||
| #include <string> | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/loss_with_reduction_impl.cuh" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class KLDivLossGpuKernel : public GpuKernel { | |||
| public: | |||
| KLDivLossGpuKernel() : input_size_(1), reduction_(1) {} | |||
| ~KLDivLossGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||
| T *input_x = GetDeviceAddress<T>(inputs, 0); | |||
| T *input_y = GetDeviceAddress<T>(inputs, 1); | |||
| T *loss = GetDeviceAddress<T>(outputs, 0); | |||
| KLDivLoss(input_size_, reduction_, input_x, input_y, loss, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||
| input_size_ *= input_shape[i]; | |||
| } | |||
| string reduction = GetAttr<string>(kernel_node, "reduction"); | |||
| if (reduction == "none") { | |||
| reduction_ = 0; | |||
| } else if (reduction == "sum") { | |||
| reduction_ = 2; | |||
| } | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||
| if (reduction_ == 0) { | |||
| output_size_list_.push_back(input_size_ * sizeof(T)); | |||
| } else { | |||
| output_size_list_.push_back(sizeof(T)); | |||
| } | |||
| } | |||
| private: | |||
| size_t input_size_; | |||
| int reduction_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_KL_DIV_GPU_KERNEL_H | |||
| @@ -0,0 +1,30 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/gpu/nn/kl_div_loss_grad_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE(KLDivLossGrad, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| KLDivLossGradGpuKernel, float) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,88 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_KL_DIV_LOSS_GRAD_KERNEL_H | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_KL_DIV_LOSS_GRAD_KERNEL_H | |||
| #include <vector> | |||
| #include <string> | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/loss_with_reduction_impl.cuh" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class KLDivLossGradGpuKernel : public GpuKernel { | |||
| public: | |||
| KLDivLossGradGpuKernel() : input_size_(1), reduction_(1) {} | |||
| ~KLDivLossGradGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||
| T *input_x = GetDeviceAddress<T>(inputs, 0); | |||
| T *input_y = GetDeviceAddress<T>(inputs, 1); | |||
| T *dloss = GetDeviceAddress<T>(inputs, 2); | |||
| T *dx = GetDeviceAddress<T>(outputs, 0); | |||
| T *dy = GetDeviceAddress<T>(outputs, 1); | |||
| KLDivLossGrad(input_size_, reduction_, input_x, input_y, dloss, dx, dy, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||
| input_size_ *= input_shape[i]; | |||
| } | |||
| string reduction = GetAttr<string>(kernel_node, "reduction"); | |||
| if (reduction == "none") { | |||
| reduction_ = 0; | |||
| } else if (reduction == "sum") { | |||
| reduction_ = 2; | |||
| } | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||
| output_size_list_.push_back(input_size_ * sizeof(T)); | |||
| output_size_list_.push_back(input_size_ * sizeof(T)); | |||
| if (reduction_ == 0) { | |||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||
| } else { | |||
| input_size_list_.push_back(sizeof(T)); | |||
| } | |||
| } | |||
| private: | |||
| size_t input_size_; | |||
| int reduction_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_KL_DIV_LOSS_GRAD_KERNEL_H | |||
| @@ -0,0 +1,86 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import composite as C | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| class Net(nn.Cell): | |||
| def __init__(self, reduction="none"): | |||
| super(Net, self).__init__() | |||
| self.KLDivLoss = P.KLDivLoss("none") | |||
| def construct(self, x, y): | |||
| return self.KLDivLoss(x, y) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_binary_cross_entropy_loss(): | |||
| np.random.seed(42) | |||
| prediction = np.random.rand(20).astype(np.float32) | |||
| target = np.random.rand(20).astype(np.float32) | |||
| net = Net() | |||
| loss = net(Tensor(prediction), Tensor(target)) | |||
| expect = [-0.5297444, -0.40738472, -0.5733339, -0.58720195, -0.42922008, -0.31237593, | |||
| -0.3332863, -0.78742254, -0.6662671, -0.17546377, -0.31526336, -0.46702948, | |||
| -0.23191005, -0.2512708, -0.20934652, -0.32021108, -0.45477402, -0.278453, | |||
| -0.5551879, -0.48938933] | |||
| assert np.allclose(loss.asnumpy(), expect) | |||
| class Grad(nn.Cell): | |||
| def __init__(self, network): | |||
| super(Grad, self).__init__() | |||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||
| self.network = network | |||
| def construct(self, x1, x2, sens): | |||
| gout = self.grad(self.network)(x1, x2, sens) | |||
| return gout | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_binary_cross_entropy_loss_grad(): | |||
| np.random.seed(42) | |||
| prediction = np.random.rand(20).astype(np.float32) | |||
| target = np.random.rand(20).astype(np.float32) | |||
| sens = np.random.rand(20).astype(np.float32) | |||
| grad = Grad(Net()) | |||
| dx = grad(Tensor(prediction), Tensor(target), Tensor(sens)) | |||
| dx1_expect = [-0.07466945, -0.06907414, -0.01004642, -0.3331403, -0.11802178, -0.52019656, | |||
| -0.06224053, -0.2674369, -0.32387912, -0.00858657, -0.58906615, -0.13217884, | |||
| -0.06111591, -0.8490888, -0.57735133, -0.7452407, -0.02695603, -0.01914206, | |||
| -0.03094601, -0.14319494] | |||
| dx2_expect = [0.0163771, -0.950962, -0.03309895, -0.5481312, 0.01523498, 0.39894313, | |||
| -0.20858267, -0.27628726, -0.06815486, -0.5134226, 0.46645382, -1.3477919, | |||
| -2.409831, 0.65787154, 0.4682768, 0.55671424, -0.04362264, -0.36274382, | |||
| 0.00852979, -0.03639247] | |||
| assert np.allclose(dx[0].asnumpy(), dx1_expect) | |||
| assert np.allclose(dx[1].asnumpy(), dx2_expect) | |||