Merge pull request !3803 from baihuawei/losstags/v0.7.0-beta
| @@ -0,0 +1,26 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/nn/kl_div_loss_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| KLDivLoss, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||||
| KLDivLossGpuKernel, float) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,86 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_KL_DIV_GPU_KERNEL_H | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_KL_DIV_GPU_KERNEL_H | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/loss_with_reduction_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class KLDivLossGpuKernel : public GpuKernel { | |||||
| public: | |||||
| KLDivLossGpuKernel() : input_size_(1), reduction_(1) {} | |||||
| ~KLDivLossGpuKernel() override = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| T *input_x = GetDeviceAddress<T>(inputs, 0); | |||||
| T *input_y = GetDeviceAddress<T>(inputs, 1); | |||||
| T *loss = GetDeviceAddress<T>(outputs, 0); | |||||
| KLDivLoss(input_size_, reduction_, input_x, input_y, loss, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||||
| input_size_ *= input_shape[i]; | |||||
| } | |||||
| string reduction = GetAttr<string>(kernel_node, "reduction"); | |||||
| if (reduction == "none") { | |||||
| reduction_ = 0; | |||||
| } else if (reduction == "sum") { | |||||
| reduction_ = 2; | |||||
| } | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| if (reduction_ == 0) { | |||||
| output_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| } else { | |||||
| output_size_list_.push_back(sizeof(T)); | |||||
| } | |||||
| } | |||||
| private: | |||||
| size_t input_size_; | |||||
| int reduction_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_KL_DIV_GPU_KERNEL_H | |||||
| @@ -0,0 +1,30 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/nn/kl_div_loss_grad_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE(KLDivLossGrad, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32), | |||||
| KLDivLossGradGpuKernel, float) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,88 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_KL_DIV_LOSS_GRAD_KERNEL_H | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_KL_DIV_LOSS_GRAD_KERNEL_H | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/loss_with_reduction_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class KLDivLossGradGpuKernel : public GpuKernel { | |||||
| public: | |||||
| KLDivLossGradGpuKernel() : input_size_(1), reduction_(1) {} | |||||
| ~KLDivLossGradGpuKernel() override = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| T *input_x = GetDeviceAddress<T>(inputs, 0); | |||||
| T *input_y = GetDeviceAddress<T>(inputs, 1); | |||||
| T *dloss = GetDeviceAddress<T>(inputs, 2); | |||||
| T *dx = GetDeviceAddress<T>(outputs, 0); | |||||
| T *dy = GetDeviceAddress<T>(outputs, 1); | |||||
| KLDivLossGrad(input_size_, reduction_, input_x, input_y, dloss, dx, dy, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||||
| input_size_ *= input_shape[i]; | |||||
| } | |||||
| string reduction = GetAttr<string>(kernel_node, "reduction"); | |||||
| if (reduction == "none") { | |||||
| reduction_ = 0; | |||||
| } else if (reduction == "sum") { | |||||
| reduction_ = 2; | |||||
| } | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| output_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| output_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| if (reduction_ == 0) { | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| } else { | |||||
| input_size_list_.push_back(sizeof(T)); | |||||
| } | |||||
| } | |||||
| private: | |||||
| size_t input_size_; | |||||
| int reduction_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_KL_DIV_LOSS_GRAD_KERNEL_H | |||||
| @@ -0,0 +1,86 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import composite as C | |||||
| from mindspore.ops import operations as P | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, reduction="none"): | |||||
| super(Net, self).__init__() | |||||
| self.KLDivLoss = P.KLDivLoss("none") | |||||
| def construct(self, x, y): | |||||
| return self.KLDivLoss(x, y) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_binary_cross_entropy_loss(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float32) | |||||
| target = np.random.rand(20).astype(np.float32) | |||||
| net = Net() | |||||
| loss = net(Tensor(prediction), Tensor(target)) | |||||
| expect = [-0.5297444, -0.40738472, -0.5733339, -0.58720195, -0.42922008, -0.31237593, | |||||
| -0.3332863, -0.78742254, -0.6662671, -0.17546377, -0.31526336, -0.46702948, | |||||
| -0.23191005, -0.2512708, -0.20934652, -0.32021108, -0.45477402, -0.278453, | |||||
| -0.5551879, -0.48938933] | |||||
| assert np.allclose(loss.asnumpy(), expect) | |||||
| class Grad(nn.Cell): | |||||
| def __init__(self, network): | |||||
| super(Grad, self).__init__() | |||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.network = network | |||||
| def construct(self, x1, x2, sens): | |||||
| gout = self.grad(self.network)(x1, x2, sens) | |||||
| return gout | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_binary_cross_entropy_loss_grad(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float32) | |||||
| target = np.random.rand(20).astype(np.float32) | |||||
| sens = np.random.rand(20).astype(np.float32) | |||||
| grad = Grad(Net()) | |||||
| dx = grad(Tensor(prediction), Tensor(target), Tensor(sens)) | |||||
| dx1_expect = [-0.07466945, -0.06907414, -0.01004642, -0.3331403, -0.11802178, -0.52019656, | |||||
| -0.06224053, -0.2674369, -0.32387912, -0.00858657, -0.58906615, -0.13217884, | |||||
| -0.06111591, -0.8490888, -0.57735133, -0.7452407, -0.02695603, -0.01914206, | |||||
| -0.03094601, -0.14319494] | |||||
| dx2_expect = [0.0163771, -0.950962, -0.03309895, -0.5481312, 0.01523498, 0.39894313, | |||||
| -0.20858267, -0.27628726, -0.06815486, -0.5134226, 0.46645382, -1.3477919, | |||||
| -2.409831, 0.65787154, 0.4682768, 0.55671424, -0.04362264, -0.36274382, | |||||
| 0.00852979, -0.03639247] | |||||
| assert np.allclose(dx[0].asnumpy(), dx1_expect) | |||||
| assert np.allclose(dx[1].asnumpy(), dx2_expect) | |||||