Merge pull request !6587 from TingWang/update-readme-linkstags/v1.0.0
| @@ -9,7 +9,7 @@ MindSpore Lite是MindSpore推出的端云协同的、轻量化、高性能AI推 | |||||
| <img src="../../docs/MindSpore-Lite-architecture.png" alt="MindSpore Lite Architecture" width="600"/> | <img src="../../docs/MindSpore-Lite-architecture.png" alt="MindSpore Lite Architecture" width="600"/> | ||||
| 欲了解更多详情,请查看我们的[MindSpore Lite 总体架构](https://www.mindspore.cn/lite/doc/note/zh-CN/master/design/mindspore/architecture_lite.html)。 | |||||
| 欲了解更多详情,请查看我们的[MindSpore Lite 总体架构](https://www.mindspore.cn/doc/note/zh-CN/master/design/mindspore/architecture_lite.html)。 | |||||
| ## MindSpore Lite技术特点 | ## MindSpore Lite技术特点 | ||||
| @@ -46,7 +46,7 @@ Dataset used: [imagenet](http://www.image-net.org/) | |||||
| ## [Mixed Precision](#contents) | ## [Mixed Precision](#contents) | ||||
| The [mixed precision](https://www.mindspore.cn/tutorial/training/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. | |||||
| The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. | |||||
| For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. | For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. | ||||
| # [Environment Requirements](#contents) | # [Environment Requirements](#contents) | ||||
| @@ -47,7 +47,7 @@ Dataset used: [imagenet](http://www.image-net.org/) | |||||
| ## [Mixed Precision](#contents) | ## [Mixed Precision](#contents) | ||||
| The [mixed precision](https://www.mindspore.cn/tutorial/training/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. | |||||
| The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. | |||||
| For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. | For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. | ||||
| @@ -147,7 +147,7 @@ sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID] | |||||
| ### Training on Ascend | ### Training on Ascend | ||||
| To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_datasets.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.** | |||||
| To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_dataset.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.** | |||||
| - Distribute mode | - Distribute mode | ||||
| @@ -236,7 +236,7 @@ step: 300, loss is 0.18949677, fps is 57.63118508760329 | |||||
| ## [How to use](#contents) | ## [How to use](#contents) | ||||
| ### Inference | ### Inference | ||||
| If you need to use the trained model to perform inference on multiple hardware platforms, such as Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example: | |||||
| If you need to use the trained model to perform inference on multiple hardware platforms, such as Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example: | |||||
| - Running on Ascend | - Running on Ascend | ||||
| @@ -135,7 +135,7 @@ After installing MindSpore via the official website, you can start training and | |||||
| ## [Training Process](#contents) | ## [Training Process](#contents) | ||||
| ### Training on Ascend | ### Training on Ascend | ||||
| To train the model, run `train.py` with the dataset `image_dir`, `anno_path` and `mindrecord_dir`. If the `mindrecord_dir` is empty, it wil generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_datasets.html) file by `image_dir` and `anno_path`(the absolute image path is joined by the `image_dir` and the relative path in `anno_path`). **Note if `mindrecord_dir` isn't empty, it will use `mindrecord_dir` rather than `image_dir` and `anno_path`.** | |||||
| To train the model, run `train.py` with the dataset `image_dir`, `anno_path` and `mindrecord_dir`. If the `mindrecord_dir` is empty, it wil generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_dataset.html) file by `image_dir` and `anno_path`(the absolute image path is joined by the `image_dir` and the relative path in `anno_path`). **Note if `mindrecord_dir` isn't empty, it will use `mindrecord_dir` rather than `image_dir` and `anno_path`.** | |||||
| - Stand alone mode | - Stand alone mode | ||||
| @@ -50,8 +50,8 @@ Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/) | |||||
| - Framework | - Framework | ||||
| - [MindSpore](https://www.mindspore.cn/install/en) | - [MindSpore](https://www.mindspore.cn/install/en) | ||||
| - For more information, please check the resources below: | - For more information, please check the resources below: | ||||
| - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html) | |||||
| - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html) | |||||
| - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) | |||||
| - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) | |||||
| # [Script description](#contents) | # [Script description](#contents) | ||||
| @@ -134,7 +134,7 @@ python eval.py --device_id 0 --dataset coco --checkpoint_path LOG4/ssd-500_458.c | |||||
| ### Training on Ascend | ### Training on Ascend | ||||
| To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_datasets.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.** | |||||
| To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_dataset.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.** | |||||
| - Distribute mode | - Distribute mode | ||||