| @@ -16,6 +16,7 @@ | |||||
| """train bert network without lossscale""" | """train bert network without lossscale""" | ||||
| import os | import os | ||||
| import time | |||||
| import pytest | import pytest | ||||
| import numpy as np | import numpy as np | ||||
| @@ -85,14 +86,23 @@ def get_config(version='base', batch_size=1): | |||||
| return bert_config | return bert_config | ||||
| def me_de_train_dataset(): | |||||
| def me_de_train_dataset(sink_mode=False): | |||||
| """test me de train dataset""" | """test me de train dataset""" | ||||
| # apply repeat operations | # apply repeat operations | ||||
| repeat_count = 1 | repeat_count = 1 | ||||
| batch_size = 16 | |||||
| ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", | ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", | ||||
| "next_sentence_labels", "masked_lm_positions", | "next_sentence_labels", "masked_lm_positions", | ||||
| "masked_lm_ids", "masked_lm_weights"], shuffle=False) | "masked_lm_ids", "masked_lm_weights"], shuffle=False) | ||||
| type_cast_op = C.TypeCast(mstype.int32) | type_cast_op = C.TypeCast(mstype.int32) | ||||
| new_repeat_count = repeat_count | |||||
| if sink_mode: | |||||
| repeat_count = 30 | |||||
| sink_steps = 100 | |||||
| ori_dataaet_size = ds.get_dataset_size() | |||||
| new_size = sink_steps * batch_size | |||||
| ds.set_dataset_size(new_size) | |||||
| new_repeat_count = int(repeat_count * ori_dataaet_size // ds.get_dataset_size()) | |||||
| ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) | ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) | ||||
| ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) | ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) | ||||
| ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) | ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) | ||||
| @@ -100,10 +110,11 @@ def me_de_train_dataset(): | |||||
| ds = ds.map(input_columns="input_mask", operations=type_cast_op) | ds = ds.map(input_columns="input_mask", operations=type_cast_op) | ||||
| ds = ds.map(input_columns="input_ids", operations=type_cast_op) | ds = ds.map(input_columns="input_ids", operations=type_cast_op) | ||||
| # apply batch operations | # apply batch operations | ||||
| batch_size = int(os.getenv('BATCH_SIZE', '16')) | |||||
| ds = ds.batch(batch_size, drop_remainder=True) | ds = ds.batch(batch_size, drop_remainder=True) | ||||
| ds = ds.repeat(repeat_count) | ds = ds.repeat(repeat_count) | ||||
| return ds | |||||
| logger.info("data size: {}".format(ds.get_dataset_size())) | |||||
| logger.info("repeat_count: {}".format(ds.get_repeat_count())) | |||||
| return ds, new_repeat_count | |||||
| def weight_variable(shape): | def weight_variable(shape): | ||||
| @@ -127,20 +138,34 @@ class ModelCallback(Callback): | |||||
| self.lossscale_list.append(cb_params.net_outputs[2].asnumpy()) | self.lossscale_list.append(cb_params.net_outputs[2].asnumpy()) | ||||
| print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs))) | print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs))) | ||||
| class TimeMonitor(Callback): | |||||
| """Time Monitor.""" | |||||
| def __init__(self, data_size): | |||||
| super(TimeMonitor, self).__init__() | |||||
| self.data_size = data_size | |||||
| self.epoch_mseconds_list = [] | |||||
| self.per_step_mseconds_list = [] | |||||
| def epoch_begin(self, run_context): | |||||
| self.epoch_time = time.time() | |||||
| def epoch_end(self, run_context): | |||||
| epoch_mseconds = (time.time() - self.epoch_time) * 1000 | |||||
| self.epoch_mseconds_list.append(epoch_mseconds) | |||||
| self.per_step_mseconds_list.append(epoch_mseconds / self.data_size) | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @pytest.mark.platform_arm_ascend_training | @pytest.mark.platform_arm_ascend_training | ||||
| @pytest.mark.platform_x86_ascend_training | @pytest.mark.platform_x86_ascend_training | ||||
| @pytest.mark.env_onecard | @pytest.mark.env_onecard | ||||
| def test_bert_tdt(): | |||||
| """test bert tdt""" | |||||
| def test_bert_percision(): | |||||
| """test bert percision""" | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) | context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) | ||||
| ds = me_de_train_dataset() | |||||
| ds, new_repeat_count = me_de_train_dataset() | |||||
| version = os.getenv('VERSION', 'large') | version = os.getenv('VERSION', 'large') | ||||
| batch_size = int(os.getenv('BATCH_SIZE', '16')) | |||||
| batch_size = 16 | |||||
| config = get_config(version=version, batch_size=batch_size) | config = get_config(version=version, batch_size=batch_size) | ||||
| netwithloss = BertNetworkWithLoss(config, True) | netwithloss = BertNetworkWithLoss(config, True) | ||||
| optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*ds.get_repeat_count(), | |||||
| optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*new_repeat_count, | |||||
| start_learning_rate=5e-5, end_learning_rate=1e-9, | start_learning_rate=5e-5, end_learning_rate=1e-9, | ||||
| power=10.0, warmup_steps=0, weight_decay=0.01) | power=10.0, warmup_steps=0, weight_decay=0.01) | ||||
| scale_window = 3 | scale_window = 3 | ||||
| @@ -169,10 +194,12 @@ def test_bert_tdt(): | |||||
| else: | else: | ||||
| logger.info("***************** BERT param name is 3 {}".format(name)) | logger.info("***************** BERT param name is 3 {}".format(name)) | ||||
| param.default_input = weight_variable(value.asnumpy().shape) | param.default_input = weight_variable(value.asnumpy().shape) | ||||
| model.train(ds.get_repeat_count(), ds, callbacks=callback, dataset_sink_mode=False) | |||||
| model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=False) | |||||
| # assertion occurs while the loss value, overflow state or loss_scale value is wrong | # assertion occurs while the loss value, overflow state or loss_scale value is wrong | ||||
| loss_value = np.array(callback.loss_list) | loss_value = np.array(callback.loss_list) | ||||
| assert np.allclose(loss_value[0], 12.207198, 0, 0.000001) | |||||
| expect_loss_value = [12.207198, 11.980881, 11.984844, 11.879381, 11.832978, 12.411333, 12.009284, | expect_loss_value = [12.207198, 11.980881, 11.984844, 11.879381, 11.832978, 12.411333, 12.009284, | ||||
| 12.621277, 12.223178, 12.427385] | 12.621277, 12.223178, 12.427385] | ||||
| print("loss value: {}".format(loss_value)) | print("loss value: {}".format(loss_value)) | ||||
| @@ -188,6 +215,73 @@ def test_bert_tdt(): | |||||
| print("loss scale: {}".format(loss_scale)) | print("loss scale: {}".format(loss_scale)) | ||||
| assert np.allclose(loss_scale, expect_loss_scale, 0, 0) | assert np.allclose(loss_scale, expect_loss_scale, 0, 0) | ||||
| def test_bert_performance(): | |||||
| """test bert performance""" | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) | |||||
| ds, new_repeat_count = me_de_train_dataset(sink_mode=True) | |||||
| version = os.getenv('VERSION', 'large') | |||||
| batch_size = 16 | |||||
| config = get_config(version=version, batch_size=batch_size) | |||||
| netwithloss = BertNetworkWithLoss(config, True) | |||||
| optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*new_repeat_count, | |||||
| start_learning_rate=5e-5, end_learning_rate=1e-9, | |||||
| power=10.0, warmup_steps=0, weight_decay=0.01) | |||||
| scale_window = 3 | |||||
| scale_manager = DynamicLossScaleManager(2 ** 16, 2, scale_window) | |||||
| netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer, | |||||
| scale_update_cell=scale_manager.get_update_cell()) | |||||
| netwithgrads.set_train(True) | |||||
| model = Model(netwithgrads) | |||||
| callback = ModelCallback() | |||||
| params = netwithloss.trainable_params() | |||||
| for param in params: | |||||
| param.init_data() | |||||
| value = param.default_input | |||||
| name = param.name | |||||
| if isinstance(value, Tensor): | |||||
| if name.split('.')[-1] in ['weight']: | |||||
| if name.split('.')[-3] in ['cls2']: | |||||
| logger.info("***************** BERT param name is 1 {}".format(name)) | |||||
| param.default_input = weight_variable(value.asnumpy().shape) | |||||
| else: | |||||
| logger.info("***************** BERT param name is 2 {}".format(name)) | |||||
| tempshape = value.asnumpy().shape | |||||
| shape = (tempshape[1], tempshape[0]) | |||||
| weight_value = weight_variable(shape).asnumpy() | |||||
| param.default_input = Tensor(np.transpose(weight_value, [1, 0])) | |||||
| else: | |||||
| logger.info("***************** BERT param name is 3 {}".format(name)) | |||||
| param.default_input = weight_variable(value.asnumpy().shape) | |||||
| time_monitor_callback = TimeMonitor(ds.get_dataset_size()) | |||||
| model.train(new_repeat_count, ds, callbacks=[time_monitor_callback, callback], | |||||
| dataset_sink_mode=True) | |||||
| # assertion occurs while the loss value, overflow state or loss_scale value is wrong | |||||
| loss_value = np.array(callback.loss_list) | |||||
| expect_loss_value = [10.237753, 10.213153, 10.212972] | |||||
| print("loss value: {}".format(loss_value)) | |||||
| assert np.allclose(loss_value, expect_loss_value, 0, 0.0005) | |||||
| overflow = np.array(callback.overflow_list) | |||||
| expect_overflow = [False, False, False] | |||||
| print("overflow: {}".format(overflow)) | |||||
| assert (overflow == expect_overflow).all() | |||||
| loss_scale = np.array(callback.lossscale_list) | |||||
| expect_loss_scale = [16384.0, 16384.0, 16384.0] | |||||
| print("loss scale: {}".format(loss_scale)) | |||||
| assert np.allclose(loss_scale, expect_loss_scale, 0, 0) | |||||
| epoch_mseconds = np.array(time_monitor_callback.epoch_mseconds_list)[2] | |||||
| expect_epoch_mseconds = 1726 | |||||
| print("epoch mseconds: {}".format(epoch_mseconds)) | |||||
| assert epoch_mseconds <= expect_epoch_mseconds + 5 | |||||
| per_step_mseconds = np.array(time_monitor_callback.per_step_mseconds_list)[2] | |||||
| expect_per_step_mseconds = 17 | |||||
| print("per step mseconds: {}".format(per_step_mseconds)) | |||||
| assert per_step_mseconds <= expect_per_step_mseconds + 1 | |||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| test_bert_tdt() | |||||
| test_bert_percision() | |||||
| test_bert_performance() | |||||