|
|
|
@@ -0,0 +1,291 @@ |
|
|
|
## MindSpore Lite 端侧场景检测demo(Android)
|
|
|
|
|
|
|
|
本示例程序演示了如何在端侧利用MindSpore Lite C++ API(Android JNI)以及MindSpore Lite 场景检测模型完成端侧推理,对设备摄像头捕获的内容进行检测,并在App图像预览界面中显示连续目标检测结果。
|
|
|
|
|
|
|
|
### 运行依赖
|
|
|
|
|
|
|
|
- Android Studio >= 3.2 (推荐4.0以上版本)
|
|
|
|
- NDK 21.3
|
|
|
|
- CMake 3.10
|
|
|
|
- Android SDK >= 26
|
|
|
|
|
|
|
|
### 构建与运行
|
|
|
|
|
|
|
|
1. 在Android Studio中加载本示例源码,并安装相应的SDK(指定SDK版本后,由Android Studio自动安装)。
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
启动Android Studio后,点击`File->Settings->System Settings->Android SDK`,勾选相应的SDK。如下图所示,勾选后,点击`OK`,Android Studio即可自动安装SDK。
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
使用过程中若出现Android Studio配置问题,可参考下表解决:
|
|
|
|
|
|
|
|
| | 报错 | 解决方案 |
|
|
|
|
| ---- | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
|
|
|
| 1 | Gradle sync failed: NDK not configured. | 在local.properties中指定安装的ndk目录:ndk.dir={ndk的安装目录} |
|
|
|
|
| 2 | Requested NDK version did not match the version requested by ndk.dir | 可手动下载相应的[NDK版本](https://developer.android.com/ndk/downloads?hl=zh-cn),并在Project Structure - Android NDK location设置中指定SDK的位置(可参考下图完成) |
|
|
|
|
| 3 | This version of Android Studio cannot open this project, please retry with Android Studio or newer. | 在工具栏-help-Checkout for Updates中更新版本 |
|
|
|
|
| 4 | SSL peer shut down incorrectly | 重新构建 |
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
2. 连接Android设备,运行场景检测示例应用程序。
|
|
|
|
|
|
|
|
通过USB连接Android设备调试,点击`Run 'app'`即可在你的设备上运行本示例项目。
|
|
|
|
> 编译过程中Android Studio会自动下载MindSpore Lite、模型文件等相关依赖项,编译过程需做耐心等待。
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
Android Studio连接设备调试操作,可参考<https://developer.android.com/studio/run/device?hl=zh-cn>。
|
|
|
|
|
|
|
|
3. 在Android设备上,点击“继续安装”。完成之后即可在手机上体验场景检测功能。
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
## 示例程序详细说明
|
|
|
|
|
|
|
|
端侧场景检测Android示例程序分为JAVA层和JNI层,其中,JAVA层主要通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理(针对推理结果画框)等功能;JNI层在[Runtime](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/runtime.html)中完成模型推理的过程。
|
|
|
|
|
|
|
|
> 此处详细说明示例程序的JNI层实现,JAVA层运用Android Camera 2 API实现开启设备摄像头以及图像帧处理等功能,需读者具备一定的Android开发基础知识。
|
|
|
|
|
|
|
|
### 示例程序结构
|
|
|
|
|
|
|
|
```text
|
|
|
|
app
|
|
|
|
|
|
|
|
|
├── libs # 存放demo jni层编译出的库文件
|
|
|
|
│ └── arm64-v8a
|
|
|
|
│ │── libmlkit-label-MS.so #
|
|
|
|
|
|
|
|
|
├── src/main
|
|
|
|
│ ├── assets # 资源文件
|
|
|
|
| | └── mobilenetv2.ms # 存放模型文件
|
|
|
|
│ |
|
|
|
|
│ ├── cpp # 模型加载和预测主要逻辑封装类
|
|
|
|
| | ├── mindspore-lite-x.x.x-mindata-arm64-cpu # minspore源码编译出的调用包,包含demo jni层依赖的库文件及相关的头文件
|
|
|
|
| | | └── ...
|
|
|
|
│ | |
|
|
|
|
| | ├── MindSporeNetnative.cpp # MindSpore调用相关的JNI方法
|
|
|
|
│ ├── java # java层应用代码
|
|
|
|
│ │ └── com.huawei.himindsporedemo
|
|
|
|
│ │ ├── help # 图像处理及MindSpore JNI调用相关实现
|
|
|
|
│ │ │ └── ...
|
|
|
|
│ │ └── obejctdetect # 开启摄像头及绘制相关实现
|
|
|
|
│ │ └── ...
|
|
|
|
│ │
|
|
|
|
│ ├── res # 存放Android相关的资源文件
|
|
|
|
│ └── AndroidManifest.xml # Android配置文件
|
|
|
|
│
|
|
|
|
├── CMakeLists.txt # cmake编译入口文件
|
|
|
|
│
|
|
|
|
├── build.gradle # 其他Android配置文件
|
|
|
|
├── download.gradle # APP构建时由gradle自动从HuaWei Server下载依赖的库文件及模型文件
|
|
|
|
└── ...
|
|
|
|
```
|
|
|
|
|
|
|
|
### 配置MindSpore Lite依赖项
|
|
|
|
|
|
|
|
Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/build.html)生成`mindspore-lite-{version}-minddata-{os}-{device}.tar.gz`库文件包并解压缩(包含`libmindspore-lite.so`库文件和相关头文件),在本例中需使用生成带图像预处理模块的编译命令。
|
|
|
|
|
|
|
|
> version:输出件版本号,与所编译的分支代码对应的版本一致。
|
|
|
|
>
|
|
|
|
> device:当前分为cpu(内置CPU算子)和gpu(内置CPU和GPU算子)。
|
|
|
|
>
|
|
|
|
> os:输出件应部署的操作系统。
|
|
|
|
|
|
|
|
本示例中,build过程由download.gradle文件自动下载MindSpore Lite 版本文件,并放置在`app/src/main/cpp/`目录下。
|
|
|
|
|
|
|
|
> 若自动下载失败,请手动下载相关库文件,解压并放在对应位置:
|
|
|
|
|
|
|
|
mindspore-lite-1.0.1-runtime-arm64-cpu.tar.gz [下载链接](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.1/lite/android_aarch64/mindspore-lite-1.0.1-runtime-arm64-cpu.tar.gz)
|
|
|
|
|
|
|
|
在app的`build.gradle`文件中配置CMake编译支持,以及`arm64-v8a`的编译支持,如下所示:
|
|
|
|
|
|
|
|
```text
|
|
|
|
android{
|
|
|
|
defaultConfig{
|
|
|
|
externalNativeBuild{
|
|
|
|
cmake{
|
|
|
|
arguments "-DANDROID_STL=c++_shared"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ndk{
|
|
|
|
abiFilters 'arm64-v8a'
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
在`app/CMakeLists.txt`文件中建立`.so`库文件链接,如下所示。
|
|
|
|
|
|
|
|
```text
|
|
|
|
# Set MindSpore Lite Dependencies.
|
|
|
|
set(MINDSPORELITE_VERSION mindspore-lite-1.0.1-runtime-arm64-cpu)
|
|
|
|
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION})
|
|
|
|
add_library(mindspore-lite SHARED IMPORTED )
|
|
|
|
add_library(minddata-lite SHARED IMPORTED )
|
|
|
|
set_target_properties(mindspore-lite PROPERTIES IMPORTED_LOCATION
|
|
|
|
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libmindspore-lite.so)
|
|
|
|
set_target_properties(minddata-lite PROPERTIES IMPORTED_LOCATION
|
|
|
|
${CMAKE_SOURCE_DIR}/src/main/cpp/${MINDSPORELITE_VERSION}/lib/libminddata-lite.so)
|
|
|
|
|
|
|
|
# Link target library.
|
|
|
|
target_link_libraries(
|
|
|
|
...
|
|
|
|
mindspore-lite
|
|
|
|
minddata-lite
|
|
|
|
...
|
|
|
|
)
|
|
|
|
```
|
|
|
|
|
|
|
|
### 下载及部署模型文件
|
|
|
|
|
|
|
|
从MindSpore Model Hub中下载模型文件,本示例程序中使用的场景检测模型文件为`mobilenetv2.ms`,同样通过`download.gradle`脚本在APP构建时自动下载,并放置在`app/src/main/assets`工程目录下。
|
|
|
|
|
|
|
|
> 若下载失败请手动下载模型文件,mobilenetv2.ms [下载链接](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms)。
|
|
|
|
|
|
|
|
### 编写端侧推理代码
|
|
|
|
|
|
|
|
在JNI层调用MindSpore Lite C++ API实现端测推理。
|
|
|
|
|
|
|
|
推理代码流程如下,完整代码请参见`src/cpp/MindSporeNetnative.cpp`。
|
|
|
|
|
|
|
|
1. 加载MindSpore Lite模型文件,构建上下文、会话以及用于推理的计算图。
|
|
|
|
|
|
|
|
- 加载模型文件
|
|
|
|
|
|
|
|
```cpp
|
|
|
|
jlong bufferLen = env->GetDirectBufferCapacity(model_buffer);
|
|
|
|
if (0 == bufferLen) {
|
|
|
|
MS_PRINT("error, bufferLen is 0!");
|
|
|
|
return (jlong) nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
char *modelBuffer = CreateLocalModelBuffer(env, model_buffer);
|
|
|
|
if (modelBuffer == nullptr) {
|
|
|
|
MS_PRINT("modelBuffer create failed!");
|
|
|
|
return (jlong) nullptr;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
- 创建会话
|
|
|
|
|
|
|
|
```cpp
|
|
|
|
void **labelEnv = new void *;
|
|
|
|
MSNetWork *labelNet = new MSNetWork;
|
|
|
|
*labelEnv = labelNet;
|
|
|
|
|
|
|
|
mindspore::lite::Context *context = new mindspore::lite::Context;
|
|
|
|
context->thread_num_ = num_thread;
|
|
|
|
context->device_list_[0].device_info_.cpu_device_info_.cpu_bind_mode_ = mindspore::lite::NO_BIND;
|
|
|
|
context->device_list_[0].device_info_.cpu_device_info_.enable_float16_ = false;
|
|
|
|
context->device_list_[0].device_type_ = mindspore::lite::DT_CPU;
|
|
|
|
|
|
|
|
labelNet->CreateSessionMS(modelBuffer, bufferLen, context);
|
|
|
|
delete context;
|
|
|
|
```
|
|
|
|
|
|
|
|
- 加载模型文件并构建用于推理的计算图
|
|
|
|
|
|
|
|
```cpp
|
|
|
|
void
|
|
|
|
MSNetWork::CreateSessionMS(char *modelBuffer, size_t bufferLen, mindspore::lite::Context *ctx) {
|
|
|
|
session_ = mindspore::session::LiteSession::CreateSession(ctx);
|
|
|
|
if (session_ == nullptr) {
|
|
|
|
MS_PRINT("Create Session failed.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compile model.
|
|
|
|
model_ = mindspore::lite::Model::Import(modelBuffer, bufferLen);
|
|
|
|
if (model_ == nullptr) {
|
|
|
|
ReleaseNets();
|
|
|
|
MS_PRINT("Import model failed.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ret = session_->CompileGraph(model_);
|
|
|
|
if (ret != mindspore::lite::RET_OK) {
|
|
|
|
ReleaseNets();
|
|
|
|
MS_PRINT("CompileGraph failed.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
2. 将输入图片转换为传入MindSpore模型的Tensor格式。
|
|
|
|
|
|
|
|
```cpp
|
|
|
|
// Convert the Bitmap image passed in from the JAVA layer to Mat for OpenCV processing
|
|
|
|
LiteMat lite_mat_bgr,lite_norm_mat_cut;
|
|
|
|
|
|
|
|
if (!BitmapToLiteMat(env, srcBitmap, lite_mat_bgr)){
|
|
|
|
MS_PRINT("BitmapToLiteMat error");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
int srcImageWidth = lite_mat_bgr.width_;
|
|
|
|
int srcImageHeight = lite_mat_bgr.height_;
|
|
|
|
if(!PreProcessImageData(lite_mat_bgr, lite_norm_mat_cut)){
|
|
|
|
MS_PRINT("PreProcessImageData error");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
ImgDims inputDims;
|
|
|
|
inputDims.channel =lite_norm_mat_cut.channel_;
|
|
|
|
inputDims.width = lite_norm_mat_cut.width_;
|
|
|
|
inputDims.height = lite_norm_mat_cut.height_;
|
|
|
|
|
|
|
|
// Get the mindsore inference environment which created in loadModel().
|
|
|
|
void **labelEnv = reinterpret_cast<void **>(netEnv);
|
|
|
|
if (labelEnv == nullptr) {
|
|
|
|
MS_PRINT("MindSpore error, labelEnv is a nullptr.");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
MSNetWork *labelNet = static_cast<MSNetWork *>(*labelEnv);
|
|
|
|
|
|
|
|
auto mSession = labelNet->session;
|
|
|
|
if (mSession == nullptr) {
|
|
|
|
MS_PRINT("MindSpore error, Session is a nullptr.");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
MS_PRINT("MindSpore get session.");
|
|
|
|
|
|
|
|
auto msInputs = mSession->GetInputs();
|
|
|
|
auto inTensor = msInputs.front();
|
|
|
|
|
|
|
|
float *dataHWC = reinterpret_cast<float *>(lite_norm_mat_cut.data_ptr_);
|
|
|
|
// copy input Tensor
|
|
|
|
memcpy(inTensor->MutableData(), dataHWC,
|
|
|
|
inputDims.channel * inputDims.width * inputDims.height * sizeof(float));
|
|
|
|
delete[] (dataHWC);
|
|
|
|
```
|
|
|
|
|
|
|
|
3. 对输入Tensor按照模型进行推理,获取输出Tensor。
|
|
|
|
|
|
|
|
- 图执行,端测推理。
|
|
|
|
|
|
|
|
```cpp
|
|
|
|
// After the model and image tensor data is loaded, run inference.
|
|
|
|
auto status = mSession->RunGraph();
|
|
|
|
|
|
|
|
if (status != mindspore::lite::RET_OK) {
|
|
|
|
MS_PRINT("MindSpore run net error.");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
- 获取输出数据。
|
|
|
|
|
|
|
|
```cpp
|
|
|
|
/**
|
|
|
|
* Get the mindspore inference results.
|
|
|
|
* Return the map of output node name and MindSpore Lite MSTensor.
|
|
|
|
*/
|
|
|
|
auto names = mSession->GetOutputTensorNames();
|
|
|
|
std::unordered_map<std::string, mindspore::tensor::MSTensor *> msOutputs;
|
|
|
|
for (const auto &name : names) {
|
|
|
|
auto temp_dat = mSession->GetOutputByTensorName(name);
|
|
|
|
msOutputs.insert(std::pair<std::string, mindspore::tensor::MSTensor *>{name, temp_dat});
|
|
|
|
}
|
|
|
|
```
|