| @@ -43,6 +43,7 @@ | |||
| #include "pre_activate/ascend/ir_fusion/momentum_lossscale_fusion.h" | |||
| #include "pre_activate/ascend/ir_fusion/mul_add_fusion.h" | |||
| #include "pre_activate/ascend/ir_fusion/mul_addn_fusion.h" | |||
| #include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h" | |||
| #include "pre_activate/ascend/format_type/insert_trans_op.h" | |||
| #include "pre_activate/pass/getitem_tuple.h" | |||
| #include "pre_activate/pass/optimize_dependence.h" | |||
| @@ -173,6 +174,7 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap | |||
| ir_fusion_pm->AddPass(std::make_shared<MomentumLossscaleFusion>()); | |||
| ir_fusion_pm->AddPass(std::make_shared<MulAddFusion>()); | |||
| ir_fusion_pm->AddPass(std::make_shared<MulAddNFusion>()); | |||
| ir_fusion_pm->AddPass(std::make_shared<MatmulBiasaddFusion>()); | |||
| ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>()); | |||
| ir_fusion_pm->AddPass(std::make_shared<TransposeTransDataFusion>()); | |||
| } | |||
| @@ -0,0 +1,51 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h" | |||
| #include <memory> | |||
| #include "pre_activate/common/helper.h" | |||
| #include "session/anf_runtime_algorithm.h" | |||
| #include "utils/utils.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| namespace { | |||
| constexpr size_t kMatMulInputIndex = 1; | |||
| constexpr size_t kBiasInputIndex = 2; | |||
| } // namespace | |||
| const BaseRef MatmulBiasaddFusion::DefinePattern() const { | |||
| VarPtr X0 = std::make_shared<Var>(); | |||
| VarPtr X1 = std::make_shared<Var>(); | |||
| VarPtr X2 = std::make_shared<Var>(); | |||
| const auto prim_bias_add = std::make_shared<Primitive>(kBiasAddOpName); | |||
| return VectorRef({prim_bias_add, VectorRef({prim::kPrimMatMul, X0, X1}), X2}); | |||
| } | |||
| const AnfNodePtr MatmulBiasaddFusion::Process(const FuncGraphPtr &, const AnfNodePtr &node, const EquivPtr &) const { | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| auto cnode = node->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(cnode); | |||
| CheckCNodeInputSize(cnode, kBiasAddInputNum); | |||
| AnfNodePtr matmul = cnode->input(kMatMulInputIndex); | |||
| MS_EXCEPTION_IF_NULL(matmul); | |||
| auto matmul_cnode = matmul->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(matmul_cnode); | |||
| matmul_cnode->add_input(cnode->input(kBiasInputIndex)); | |||
| AnfAlgo::SetNodeAttr(kAttrHasBias, MakeValue(true), matmul); | |||
| return matmul; | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,34 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_MATMUL_BIASADD_FUSION_H_ | |||
| #define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_MATMUL_BIASADD_FUSION_H_ | |||
| #include "pre_activate/common/optimizer.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class MatmulBiasaddFusion : public PatternProcessPass { | |||
| public: | |||
| explicit MatmulBiasaddFusion(bool multigraph = true) : PatternProcessPass("matmul_biasadd_fusion", multigraph) {} | |||
| ~MatmulBiasaddFusion() override = default; | |||
| const BaseRef DefinePattern() const override; | |||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||
| }; | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_MATMUL_BIASADD_FUSION_H_ | |||
| @@ -84,6 +84,7 @@ constexpr size_t kLayerNormGradInputNum = 6; | |||
| constexpr size_t kAdamApplyOneOutputNum = 3; | |||
| constexpr size_t kBackendTransDataInputNum = 2; | |||
| constexpr size_t kApplyMomentumInputNum = 6; | |||
| constexpr size_t kBiasAddInputNum = 3; | |||
| enum FusedBatchNormInput { | |||
| kX = 1, | |||
| @@ -110,6 +110,7 @@ constexpr auto kResizeNearestNeighborGrad = "ResizeNearestNeighborGrad"; | |||
| constexpr auto kFusedMulAddOpName = "FusedMulAdd"; | |||
| constexpr auto kFusedMulAddNOpName = "FusedMulAddN"; | |||
| constexpr auto kFusedMulApplyMomentumOpName = "FusedMulApplyMomentum"; | |||
| constexpr auto kBiasAddOpName = "BiasAdd"; | |||
| // attr key name | |||
| constexpr auto kAttrInputNames = "input_names"; | |||
| @@ -140,6 +141,7 @@ constexpr auto kAttrDynInput = "dynamic"; | |||
| constexpr auto kAttrDynInputSizes = "dyn_input_sizes"; | |||
| constexpr auto kAttrSrcFormat = "src_format"; | |||
| constexpr auto kAttrOutputUsedNum = "output_used_num"; | |||
| constexpr auto kAttrHasBias = "has_bias"; | |||
| // attr value | |||
| constexpr auto kValueTargetSwitch = "target_switch"; | |||
| @@ -0,0 +1,56 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h" | |||
| #include "common/backend_common_test.h" | |||
| #include "common/py_func_graph_fetcher.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class TestHWMatmulBiasaddFusion : public BackendCommon { | |||
| public: | |||
| TestHWMatmulBiasaddFusion() : get_py_fun_("gtest_input.pre_activate.matmul_biasadd_fusion_test", true) {} | |||
| ~TestHWMatmulBiasaddFusion() override = default; | |||
| UT::PyFuncGraphFetcher get_py_fun_; | |||
| }; | |||
| TEST_F(TestHWMatmulBiasaddFusion, test_matmul_biasadd_fusion) { | |||
| FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_matmul_biasadd_fusion", "before"); | |||
| EXPECT_NE(g, nullptr); | |||
| std::vector<int> shpx{1, 3}; | |||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shpx); | |||
| std::vector<int> shpy{3, 4}; | |||
| auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shpy); | |||
| std::vector<int> shp_bias{4}; | |||
| auto bias_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_bias); | |||
| AbstractBasePtrList args_spec_list; | |||
| args_spec_list.push_back(x_abstract); | |||
| args_spec_list.push_back(y_abstract); | |||
| args_spec_list.push_back(bias_abstract); | |||
| auto kg = GetKernelGraph(g, args_spec_list); | |||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||
| auto pm = std::make_shared<opt::PassManager>(); | |||
| pm->AddPass(std::make_shared<opt::MatmulBiasaddFusion>()); | |||
| optimizer->AddPassManager(pm); | |||
| FuncGraphPtr new_graph = optimizer->Optimize(kg); | |||
| FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_matmul_biasadd_fusion", "after"); | |||
| EXPECT_TRUE(CheckEqualGraph(g_after, new_graph)); | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,46 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import Primitive | |||
| MatMul = P.MatMul() | |||
| BiasAdd = P.BiasAdd() | |||
| make_tuple = Primitive('make_tuple') | |||
| class FnDict: | |||
| def __init__(self): | |||
| self.fnDict = {} | |||
| def __call__(self, fn): | |||
| self.fnDict[fn.__name__] = fn | |||
| def __getitem__(self, name): | |||
| return self.fnDict[name] | |||
| def test_matmul_biasadd_fusion(tag): | |||
| fns = FnDict() | |||
| @fns | |||
| def before(input0, input1, input2): | |||
| matmul = MatMul(input0, input1) | |||
| biasadd = BiasAdd(matmul, input2) | |||
| return biasadd | |||
| @fns | |||
| def after(input0, input1, input2): | |||
| return make_tuple(MatMul(input0, input1, input2)) | |||
| return fns[tag] | |||