| @@ -43,6 +43,7 @@ | |||||
| #include "pre_activate/ascend/ir_fusion/momentum_lossscale_fusion.h" | #include "pre_activate/ascend/ir_fusion/momentum_lossscale_fusion.h" | ||||
| #include "pre_activate/ascend/ir_fusion/mul_add_fusion.h" | #include "pre_activate/ascend/ir_fusion/mul_add_fusion.h" | ||||
| #include "pre_activate/ascend/ir_fusion/mul_addn_fusion.h" | #include "pre_activate/ascend/ir_fusion/mul_addn_fusion.h" | ||||
| #include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h" | |||||
| #include "pre_activate/ascend/format_type/insert_trans_op.h" | #include "pre_activate/ascend/format_type/insert_trans_op.h" | ||||
| #include "pre_activate/pass/getitem_tuple.h" | #include "pre_activate/pass/getitem_tuple.h" | ||||
| #include "pre_activate/pass/optimize_dependence.h" | #include "pre_activate/pass/optimize_dependence.h" | ||||
| @@ -173,6 +174,7 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap | |||||
| ir_fusion_pm->AddPass(std::make_shared<MomentumLossscaleFusion>()); | ir_fusion_pm->AddPass(std::make_shared<MomentumLossscaleFusion>()); | ||||
| ir_fusion_pm->AddPass(std::make_shared<MulAddFusion>()); | ir_fusion_pm->AddPass(std::make_shared<MulAddFusion>()); | ||||
| ir_fusion_pm->AddPass(std::make_shared<MulAddNFusion>()); | ir_fusion_pm->AddPass(std::make_shared<MulAddNFusion>()); | ||||
| ir_fusion_pm->AddPass(std::make_shared<MatmulBiasaddFusion>()); | |||||
| ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>()); | ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>()); | ||||
| ir_fusion_pm->AddPass(std::make_shared<TransposeTransDataFusion>()); | ir_fusion_pm->AddPass(std::make_shared<TransposeTransDataFusion>()); | ||||
| } | } | ||||
| @@ -0,0 +1,51 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h" | |||||
| #include <memory> | |||||
| #include "pre_activate/common/helper.h" | |||||
| #include "session/anf_runtime_algorithm.h" | |||||
| #include "utils/utils.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| namespace { | |||||
| constexpr size_t kMatMulInputIndex = 1; | |||||
| constexpr size_t kBiasInputIndex = 2; | |||||
| } // namespace | |||||
| const BaseRef MatmulBiasaddFusion::DefinePattern() const { | |||||
| VarPtr X0 = std::make_shared<Var>(); | |||||
| VarPtr X1 = std::make_shared<Var>(); | |||||
| VarPtr X2 = std::make_shared<Var>(); | |||||
| const auto prim_bias_add = std::make_shared<Primitive>(kBiasAddOpName); | |||||
| return VectorRef({prim_bias_add, VectorRef({prim::kPrimMatMul, X0, X1}), X2}); | |||||
| } | |||||
| const AnfNodePtr MatmulBiasaddFusion::Process(const FuncGraphPtr &, const AnfNodePtr &node, const EquivPtr &) const { | |||||
| MS_EXCEPTION_IF_NULL(node); | |||||
| auto cnode = node->cast<CNodePtr>(); | |||||
| MS_EXCEPTION_IF_NULL(cnode); | |||||
| CheckCNodeInputSize(cnode, kBiasAddInputNum); | |||||
| AnfNodePtr matmul = cnode->input(kMatMulInputIndex); | |||||
| MS_EXCEPTION_IF_NULL(matmul); | |||||
| auto matmul_cnode = matmul->cast<CNodePtr>(); | |||||
| MS_EXCEPTION_IF_NULL(matmul_cnode); | |||||
| matmul_cnode->add_input(cnode->input(kBiasInputIndex)); | |||||
| AnfAlgo::SetNodeAttr(kAttrHasBias, MakeValue(true), matmul); | |||||
| return matmul; | |||||
| } | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,34 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_MATMUL_BIASADD_FUSION_H_ | |||||
| #define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_MATMUL_BIASADD_FUSION_H_ | |||||
| #include "pre_activate/common/optimizer.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| class MatmulBiasaddFusion : public PatternProcessPass { | |||||
| public: | |||||
| explicit MatmulBiasaddFusion(bool multigraph = true) : PatternProcessPass("matmul_biasadd_fusion", multigraph) {} | |||||
| ~MatmulBiasaddFusion() override = default; | |||||
| const BaseRef DefinePattern() const override; | |||||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||||
| }; | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_MATMUL_BIASADD_FUSION_H_ | |||||
| @@ -84,6 +84,7 @@ constexpr size_t kLayerNormGradInputNum = 6; | |||||
| constexpr size_t kAdamApplyOneOutputNum = 3; | constexpr size_t kAdamApplyOneOutputNum = 3; | ||||
| constexpr size_t kBackendTransDataInputNum = 2; | constexpr size_t kBackendTransDataInputNum = 2; | ||||
| constexpr size_t kApplyMomentumInputNum = 6; | constexpr size_t kApplyMomentumInputNum = 6; | ||||
| constexpr size_t kBiasAddInputNum = 3; | |||||
| enum FusedBatchNormInput { | enum FusedBatchNormInput { | ||||
| kX = 1, | kX = 1, | ||||
| @@ -110,6 +110,7 @@ constexpr auto kResizeNearestNeighborGrad = "ResizeNearestNeighborGrad"; | |||||
| constexpr auto kFusedMulAddOpName = "FusedMulAdd"; | constexpr auto kFusedMulAddOpName = "FusedMulAdd"; | ||||
| constexpr auto kFusedMulAddNOpName = "FusedMulAddN"; | constexpr auto kFusedMulAddNOpName = "FusedMulAddN"; | ||||
| constexpr auto kFusedMulApplyMomentumOpName = "FusedMulApplyMomentum"; | constexpr auto kFusedMulApplyMomentumOpName = "FusedMulApplyMomentum"; | ||||
| constexpr auto kBiasAddOpName = "BiasAdd"; | |||||
| // attr key name | // attr key name | ||||
| constexpr auto kAttrInputNames = "input_names"; | constexpr auto kAttrInputNames = "input_names"; | ||||
| @@ -140,6 +141,7 @@ constexpr auto kAttrDynInput = "dynamic"; | |||||
| constexpr auto kAttrDynInputSizes = "dyn_input_sizes"; | constexpr auto kAttrDynInputSizes = "dyn_input_sizes"; | ||||
| constexpr auto kAttrSrcFormat = "src_format"; | constexpr auto kAttrSrcFormat = "src_format"; | ||||
| constexpr auto kAttrOutputUsedNum = "output_used_num"; | constexpr auto kAttrOutputUsedNum = "output_used_num"; | ||||
| constexpr auto kAttrHasBias = "has_bias"; | |||||
| // attr value | // attr value | ||||
| constexpr auto kValueTargetSwitch = "target_switch"; | constexpr auto kValueTargetSwitch = "target_switch"; | ||||
| @@ -0,0 +1,56 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h" | |||||
| #include "common/backend_common_test.h" | |||||
| #include "common/py_func_graph_fetcher.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| class TestHWMatmulBiasaddFusion : public BackendCommon { | |||||
| public: | |||||
| TestHWMatmulBiasaddFusion() : get_py_fun_("gtest_input.pre_activate.matmul_biasadd_fusion_test", true) {} | |||||
| ~TestHWMatmulBiasaddFusion() override = default; | |||||
| UT::PyFuncGraphFetcher get_py_fun_; | |||||
| }; | |||||
| TEST_F(TestHWMatmulBiasaddFusion, test_matmul_biasadd_fusion) { | |||||
| FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_matmul_biasadd_fusion", "before"); | |||||
| EXPECT_NE(g, nullptr); | |||||
| std::vector<int> shpx{1, 3}; | |||||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shpx); | |||||
| std::vector<int> shpy{3, 4}; | |||||
| auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shpy); | |||||
| std::vector<int> shp_bias{4}; | |||||
| auto bias_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_bias); | |||||
| AbstractBasePtrList args_spec_list; | |||||
| args_spec_list.push_back(x_abstract); | |||||
| args_spec_list.push_back(y_abstract); | |||||
| args_spec_list.push_back(bias_abstract); | |||||
| auto kg = GetKernelGraph(g, args_spec_list); | |||||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||||
| auto pm = std::make_shared<opt::PassManager>(); | |||||
| pm->AddPass(std::make_shared<opt::MatmulBiasaddFusion>()); | |||||
| optimizer->AddPassManager(pm); | |||||
| FuncGraphPtr new_graph = optimizer->Optimize(kg); | |||||
| FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_matmul_biasadd_fusion", "after"); | |||||
| EXPECT_TRUE(CheckEqualGraph(g_after, new_graph)); | |||||
| } | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,46 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops import Primitive | |||||
| MatMul = P.MatMul() | |||||
| BiasAdd = P.BiasAdd() | |||||
| make_tuple = Primitive('make_tuple') | |||||
| class FnDict: | |||||
| def __init__(self): | |||||
| self.fnDict = {} | |||||
| def __call__(self, fn): | |||||
| self.fnDict[fn.__name__] = fn | |||||
| def __getitem__(self, name): | |||||
| return self.fnDict[name] | |||||
| def test_matmul_biasadd_fusion(tag): | |||||
| fns = FnDict() | |||||
| @fns | |||||
| def before(input0, input1, input2): | |||||
| matmul = MatMul(input0, input1) | |||||
| biasadd = BiasAdd(matmul, input2) | |||||
| return biasadd | |||||
| @fns | |||||
| def after(input0, input1, input2): | |||||
| return make_tuple(MatMul(input0, input1, input2)) | |||||
| return fns[tag] | |||||