| @@ -14,7 +14,6 @@ | |||
| # ============================================================================ | |||
| """Bernoulli Distribution""" | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import composite as C | |||
| from .distribution import Distribution | |||
| from ._utils.utils import cast_to_tensor, check_prob | |||
| from ...common import dtype as mstype | |||
| @@ -37,10 +36,10 @@ class Bernoulli(Distribution): | |||
| >>> # To initialize a Bernoulli distribution of prob 0.5 | |||
| >>> n = nn.Bernoulli(0.5, dtype=mstype.int32) | |||
| >>> | |||
| >>> # The following create two independent Bernoulli distributions | |||
| >>> # The following creates two independent Bernoulli distributions | |||
| >>> n = nn.Bernoulli([0.5, 0.5], dtype=mstype.int32) | |||
| >>> | |||
| >>> # A Bernoulli distribution can be initilize without arguments | |||
| >>> # A Bernoulli distribution can be initilized without arguments | |||
| >>> # In this case, probs must be passed in through construct. | |||
| >>> n = nn.Bernoulli(dtype=mstype.int32) | |||
| >>> | |||
| @@ -54,29 +53,29 @@ class Bernoulli(Distribution): | |||
| >>> # All the following calls in construct are valid | |||
| >>> def construct(self, value, probs_b, probs_a): | |||
| >>> | |||
| >>> # Similar to calls can be made to other probability functions | |||
| >>> # Similar calls can be made to other probability functions | |||
| >>> # by replacing 'prob' with the name of the function | |||
| >>> ans = self.b1('prob', value) | |||
| >>> # Evaluate with the respect to distribution b | |||
| >>> ans = self.b1('prob', value, probs_b) | |||
| >>> | |||
| >>> # Additional probs must be passed in through construct | |||
| >>> # probs must be passed in through construct | |||
| >>> ans = self.b2('prob', value, probs_a) | |||
| >>> | |||
| >>> # Functions 'sd', 'var', 'entropy' have the same usage with 'mean' | |||
| >>> # Functions 'sd', 'var', 'entropy' have the same usage like 'mean' | |||
| >>> # Will return [0.0] | |||
| >>> ans = self.b1('mean') | |||
| >>> # Will return mean_b | |||
| >>> ans = self.b1('mean', probs_b) | |||
| >>> | |||
| >>> # Additional probs must be passed in through construct | |||
| >>> # probs must be passed in through construct | |||
| >>> ans = self.b2('mean', probs_a) | |||
| >>> | |||
| >>> # Usage of 'kl_loss' and 'cross_entropy' are similar | |||
| >>> ans = self.b1('kl_loss', 'Bernoulli', probs_b) | |||
| >>> ans = self.b1('kl_loss', 'Bernoulli', probs_b, probs_a) | |||
| >>> | |||
| >>> # Additional probs must be passed in through construct | |||
| >>> # Additional probs_a must be passed in through construct | |||
| >>> ans = self.b2('kl_loss', 'Bernoulli', probs_b, probs_a) | |||
| >>> | |||
| >>> # Sample Usage | |||
| @@ -110,18 +109,12 @@ class Bernoulli(Distribution): | |||
| self.erf = P.Erf() | |||
| self.fill = P.Fill() | |||
| self.log = P.Log() | |||
| self.add = P.TensorAdd() | |||
| self.sq = P.Square() | |||
| self.mul = P.Mul() | |||
| self.sqrt = P.Sqrt() | |||
| self.realdiv = P.RealDiv() | |||
| self.shape = P.Shape() | |||
| self.const = P.ScalarToArray() | |||
| self.less = P.Less() | |||
| self.cast = P.Cast() | |||
| self.erf = P.Erf() | |||
| self.shape = P.Shape() | |||
| self.select = P.Select() | |||
| self.fill = P.Fill() | |||
| self.sq = P.Square() | |||
| self.sqrt = P.Sqrt() | |||
| self.uniform = P.UniformReal(seed=seed) | |||
| def extend_repr(self): | |||
| if self.is_scalar_batch: | |||
| @@ -143,7 +136,7 @@ class Bernoulli(Distribution): | |||
| MEAN(B) = probs1 | |||
| """ | |||
| if name == 'mean': | |||
| return self._probs if probs1 is None else probs1 | |||
| return self.probs if probs1 is None else probs1 | |||
| return None | |||
| def _mode(self, name='mode', probs1=None): | |||
| @@ -166,9 +159,9 @@ class Bernoulli(Distribution): | |||
| VAR(B) = probs1 * probs0 | |||
| """ | |||
| if name in self._variance_functions: | |||
| probs1 = self._probs if probs1 is None else probs1 | |||
| probs1 = self.probs if probs1 is None else probs1 | |||
| probs0 = 1.0 - probs1 | |||
| return self.mul(probs0, probs1) | |||
| return probs0 * probs1 | |||
| return None | |||
| def _entropy(self, name='entropy', probs=None): | |||
| @@ -177,9 +170,9 @@ class Bernoulli(Distribution): | |||
| H(B) = -probs0 * \log(probs0) - probs1 * \log(probs1) | |||
| """ | |||
| if name == 'entropy': | |||
| probs1 = self._probs if probs is None else probs | |||
| probs1 = self.probs if probs is None else probs | |||
| probs0 = 1 - probs1 | |||
| return -self.mul(probs0, self.log(probs0)) - self.mul(probs1, self.log(probs1)) | |||
| return -1 * (probs0 * self.log(probs0)) - (probs1 * self.log(probs1)) | |||
| return None | |||
| def _cross_entropy(self, name, dist, probs1_b, probs1_a=None): | |||
| @@ -190,7 +183,7 @@ class Bernoulli(Distribution): | |||
| name (str): name of the funtion. | |||
| dist (str): type of the distributions. Should be "Bernoulli" in this case. | |||
| probs1_b (Tensor): probs1 of distribution b. | |||
| probs1_a (Tensor): probs1 of distribution a. Default: self._probs. | |||
| probs1_a (Tensor): probs1 of distribution a. Default: self.probs. | |||
| """ | |||
| if name == 'cross_entropy' and dist == 'Bernoulli': | |||
| return self._entropy(probs=probs1_a) + self._kl_loss(name, dist, probs1_b, probs1_a) | |||
| @@ -203,14 +196,14 @@ class Bernoulli(Distribution): | |||
| Args: | |||
| name (str): name of the function. Should be "prob" when passed in from construct. | |||
| value (Tensor): a Tensor composed of only zeros and ones. | |||
| probs (Tensor): probability of outcome is 1. Default: self._probs. | |||
| probs (Tensor): probability of outcome is 1. Default: self.probs. | |||
| .. math:: | |||
| pmf(k) = probs1 if k = 1; | |||
| pmf(k) = probs0 if k = 0; | |||
| """ | |||
| if name in self._prob_functions: | |||
| probs1 = self._probs if probs is None else probs | |||
| probs1 = self.probs if probs is None else probs | |||
| probs0 = 1.0 - probs1 | |||
| return (probs1 * value) + (probs0 * (1.0 - value)) | |||
| return None | |||
| @@ -222,7 +215,7 @@ class Bernoulli(Distribution): | |||
| Args: | |||
| name (str): name of the function. | |||
| value (Tensor): value to be evaluated. | |||
| probs (Tensor): probability of outcome is 1. Default: self._probs. | |||
| probs (Tensor): probability of outcome is 1. Default: self.probs. | |||
| .. math:: | |||
| cdf(k) = 0 if k < 0; | |||
| @@ -250,17 +243,17 @@ class Bernoulli(Distribution): | |||
| name (str): name of the funtion. | |||
| dist (str): type of the distributions. Should be "Bernoulli" in this case. | |||
| probs1_b (Tensor): probs1 of distribution b. | |||
| probs1_a (Tensor): probs1 of distribution a. Default: self._probs. | |||
| probs1_a (Tensor): probs1 of distribution a. Default: self.probs. | |||
| .. math:: | |||
| KL(a||b) = probs1_a * \log(\fract{probs1_a}{probs1_b}) + | |||
| probs0_a * \log(\fract{probs0_a}{probs0_b}) | |||
| """ | |||
| if name in self._divergence_functions and dist == 'Bernoulli': | |||
| probs1_a = self._probs if probs1_a is None else probs1_a | |||
| probs1_a = self.probs if probs1_a is None else probs1_a | |||
| probs0_a = 1.0 - probs1_a | |||
| probs0_b = 1.0 - probs1_b | |||
| return self.mul(probs1_a, self.log(probs1_a / probs1_b)) + self.mul(probs0_a, self.log(probs0_a / probs0_b)) | |||
| return probs1_a * self.log(probs1_a / probs1_b) + probs0_a * self.log(probs0_a / probs0_b) | |||
| return None | |||
| def _sample(self, name, shape=(), probs=None): | |||
| @@ -270,21 +263,17 @@ class Bernoulli(Distribution): | |||
| Args: | |||
| name (str): name of the function. Should always be 'sample' when passed in from construct. | |||
| shape (tuple): shape of the sample. Default: (). | |||
| probs (Tensor): probs1 of the samples. Default: self._probs. | |||
| probs (Tensor): probs1 of the samples. Default: self.probs. | |||
| Returns: | |||
| Tensor, shape is shape + batch_shape. | |||
| """ | |||
| if name == 'sample': | |||
| probs1 = self._probs if probs is None else probs | |||
| batch_shape = self.shape(probs1) | |||
| sample_shape = shape + batch_shape | |||
| mean_zero = self.const(0.0) | |||
| sd_one = self.const(1.0) | |||
| sqrt_two = self.sqrt(self.const(2.0)) | |||
| sample_norm = C.normal(sample_shape, mean_zero, sd_one, self.seed) | |||
| sample_uniform = 0.5 * (1 + self.erf(self.realdiv(sample_norm, sqrt_two))) | |||
| probs1 = self.probs if probs is None else probs | |||
| l_zero = self.const(0.0) | |||
| h_one = self.const(1.0) | |||
| sample_uniform = self.uniform(shape + self.shape(probs1), l_zero, h_one) | |||
| sample = self.less(sample_uniform, probs1) | |||
| sample = self.cast(sample, self._dtype) | |||
| sample = self.cast(sample, self.dtype) | |||
| return sample | |||
| return None | |||
| @@ -30,12 +30,14 @@ class Distribution(Cell): | |||
| and _log_prob. Functions should be called through construct when | |||
| used inside a network. Arguments should be passed in through *args | |||
| in the form of function name followed by additional arguments. | |||
| Functions such as cdf and prob, requires a value to be passed in while | |||
| functions such as mean, and sd does not require arguments other than name. | |||
| Functions such as cdf and prob, require a value to be passed in while | |||
| functions such as mean and sd do not require arguments other than name. | |||
| Dist_spec_args are unique for each distribution. For example, mean and sd | |||
| are the dist_spec_args for a Normal distribution. For all functions, dist_spec_args, are optional. Passing in | |||
| the additional dist_spec_args will make the result to be evaluated with | |||
| Dist_spec_args are unique for each type of distribution. For example, mean and sd | |||
| are the dist_spec_args for a Normal distribution. | |||
| For all functions, passing in dist_spec_args, are optional. | |||
| Passing in the additional dist_spec_args will make the result to be evaluated with | |||
| new distribution specified by the dist_spec_args. But it won't change the | |||
| original distribuion. | |||
| """ | |||
| @@ -258,7 +260,8 @@ class Distribution(Cell): | |||
| Evaluate the log cdf at given value. | |||
| Note: | |||
| Args must include value, and dist_spec_args are optional. | |||
| Args must include name of the function and value. | |||
| Dist_spec_args are optional. | |||
| """ | |||
| return self._call_log_cdf(*args) | |||
| @@ -428,6 +431,11 @@ class Distribution(Cell): | |||
| """ | |||
| Override construct in Cell. | |||
| Note: | |||
| Names of supported functions: | |||
| 'prob', 'log_prob', 'cdf', 'log_cdf', 'survival_function', 'log_survival' | |||
| 'var', 'sd', 'entropy', 'kl_loss', 'cross_entropy', 'sample'. | |||
| Args: | |||
| *inputs (list): inputs[0] is always the name of the function. | |||
| """ | |||
| @@ -13,6 +13,7 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Exponential Distribution""" | |||
| import numpy as np | |||
| from mindspore.ops import operations as P | |||
| from .distribution import Distribution | |||
| from ...common import dtype as mstype | |||
| @@ -36,10 +37,10 @@ class Exponential(Distribution): | |||
| >>> # To initialize an Exponential distribution of rate 0.5 | |||
| >>> n = nn.Exponential(0.5, dtype=mstype.float32) | |||
| >>> | |||
| >>> # The following create two independent Exponential distributions | |||
| >>> # The following creates two independent Exponential distributions | |||
| >>> n = nn.Exponential([0.5, 0.5], dtype=mstype.float32) | |||
| >>> | |||
| >>> # A Exponential distribution can be initilize without arguments | |||
| >>> # A Exponential distribution can be initilized without arguments | |||
| >>> # In this case, rate must be passed in through construct. | |||
| >>> n = nn.Exponential(dtype=mstype.float32) | |||
| >>> | |||
| @@ -53,13 +54,13 @@ class Exponential(Distribution): | |||
| >>> # All the following calls in construct are valid | |||
| >>> def construct(self, value, rate_b, rate_a): | |||
| >>> | |||
| >>> # Similar to calls can be made to other probability functions | |||
| >>> # Similar calls can be made to other probability functions | |||
| >>> # by replacing 'prob' with the name of the function | |||
| >>> ans = self.e1('prob', value) | |||
| >>> # Evaluate with the respect to distribution b | |||
| >>> ans = self.e1('prob', value, rate_b) | |||
| >>> | |||
| >>> # Additional rate must be passed in through construct | |||
| >>> # Rate must be passed in through construct | |||
| >>> ans = self.e2('prob', value, rate_a) | |||
| >>> | |||
| >>> # Functions 'sd', 'var', 'entropy' have the same usage with 'mean' | |||
| @@ -68,7 +69,7 @@ class Exponential(Distribution): | |||
| >>> # Will return mean_b | |||
| >>> ans = self.e1('mean', rate_b) | |||
| >>> | |||
| >>> # Additional rate must be passed in through construct | |||
| >>> # Rate must be passed in through construct | |||
| >>> ans = self.e2('mean', rate_a) | |||
| >>> | |||
| >>> # Usage of 'kl_loss' and 'cross_entropy' are similar | |||
| @@ -101,21 +102,20 @@ class Exponential(Distribution): | |||
| else: | |||
| self._rate = rate | |||
| self.minval = np.finfo(np.float).tiny | |||
| # ops needed for the class | |||
| self.const = P.ScalarToArray() | |||
| self.dtypeop = P.DType() | |||
| self.exp = P.Exp() | |||
| self.log = P.Log() | |||
| self.add = P.TensorAdd() | |||
| self.mul = P.Mul() | |||
| self.sqrt = P.Sqrt() | |||
| self.realdiv = P.RealDiv() | |||
| self.shape = P.Shape() | |||
| self.normal = P.Normal(seed=seed) | |||
| self.sq = P.Square() | |||
| self.fill = P.Fill() | |||
| self.less = P.Less() | |||
| self.log = P.Log() | |||
| self.select = P.Select() | |||
| self.shape = P.Shape() | |||
| self.sqrt = P.Sqrt() | |||
| self.sq = P.Square() | |||
| self.uniform = P.UniformReal(seed=seed) | |||
| def extend_repr(self): | |||
| if self.is_scalar_batch: | |||
| @@ -137,7 +137,7 @@ class Exponential(Distribution): | |||
| MEAN(EXP) = \fract{1.0}{\lambda}. | |||
| """ | |||
| if name == 'mean': | |||
| rate = self._rate if rate is None else rate | |||
| rate = self.rate if rate is None else rate | |||
| return 1.0 / rate | |||
| return None | |||
| @@ -157,7 +157,7 @@ class Exponential(Distribution): | |||
| sd(EXP) = \fract{1.0}{\lambda}. | |||
| """ | |||
| if name in self._variance_functions: | |||
| rate = self._rate if rate is None else rate | |||
| rate = self.rate if rate is None else rate | |||
| return 1.0 / rate | |||
| return None | |||
| @@ -166,7 +166,7 @@ class Exponential(Distribution): | |||
| .. math:: | |||
| H(Exp) = 1 - \log(\lambda). | |||
| """ | |||
| rate = self._rate if rate is None else rate | |||
| rate = self.rate if rate is None else rate | |||
| if name == 'entropy': | |||
| return 1.0 - self.log(rate) | |||
| return None | |||
| @@ -179,7 +179,7 @@ class Exponential(Distribution): | |||
| name (str): name of the funtion. Should always be "cross_entropy" when passed in from construct. | |||
| dist (str): type of the distributions. Should be "Exponential" in this case. | |||
| rate_b (Tensor): rate of distribution b. | |||
| rate_a (Tensor): rate of distribution a. Default: self._rate. | |||
| rate_a (Tensor): rate of distribution a. Default: self.rate. | |||
| """ | |||
| if name == 'cross_entropy' and dist == 'Exponential': | |||
| return self._entropy(rate=rate_a) + self._kl_loss(name, dist, rate_b, rate_a) | |||
| @@ -193,7 +193,7 @@ class Exponential(Distribution): | |||
| Args: | |||
| name (str): name of the function. | |||
| value (Tensor): value to be evaluated. | |||
| rate (Tensor): rate of the distribution. Default: self._rate. | |||
| rate (Tensor): rate of the distribution. Default: self.rate. | |||
| Note: | |||
| Value should be greater or equal to zero. | |||
| @@ -216,7 +216,7 @@ class Exponential(Distribution): | |||
| Args: | |||
| name (str): name of the function. | |||
| value (Tensor): value to be evaluated. | |||
| rate (Tensor): rate of the distribution. Default: self._rate. | |||
| rate (Tensor): rate of the distribution. Default: self.rate. | |||
| Note: | |||
| Value should be greater or equal to zero. | |||
| @@ -240,15 +240,29 @@ class Exponential(Distribution): | |||
| name (str): name of the funtion. | |||
| dist (str): type of the distributions. Should be "Exponential" in this case. | |||
| rate_b (Tensor): rate of distribution b. | |||
| rate_a (Tensor): rate of distribution a. Default: self._rate. | |||
| rate_a (Tensor): rate of distribution a. Default: self.rate. | |||
| """ | |||
| if name in self._divergence_functions and dist == 'Exponential': | |||
| rate_a = self._rate if rate_a is None else rate_a | |||
| rate_a = self.rate if rate_a is None else rate_a | |||
| return self.log(rate_a) - self.log(rate_b) + rate_b / rate_a - 1.0 | |||
| return None | |||
| def _sample(self, name, shape=(), rate=None): | |||
| """ | |||
| Sampling. | |||
| Args: | |||
| name (str): name of the function. | |||
| shape (tuple): shape of the sample. Default: (). | |||
| rate (Tensor): rate of the distribution. Default: self.rate. | |||
| Returns: | |||
| Tensor, shape is shape + batch_shape. | |||
| """ | |||
| if name == 'sample': | |||
| rate = self._rate if rate is None else rate | |||
| return self.fill(mstype.float32, shape + self.shape(rate), 1.0) | |||
| rate = self.rate if rate is None else rate | |||
| minval = self.const(self.minval) | |||
| maxval = self.const(1.0) | |||
| sample = self.uniform(shape + self.shape(rate), minval, maxval) | |||
| return -self.log(sample) / rate | |||
| return None | |||
| @@ -13,6 +13,7 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Geometric Distribution""" | |||
| import numpy as np | |||
| from mindspore.ops import operations as P | |||
| from .distribution import Distribution | |||
| from ._utils.utils import cast_to_tensor, check_prob | |||
| @@ -37,10 +38,10 @@ class Geometric(Distribution): | |||
| >>> # To initialize a Geometric distribution of prob 0.5 | |||
| >>> n = nn.Geometric(0.5, dtype=mstype.int32) | |||
| >>> | |||
| >>> # The following create two independent Geometric distributions | |||
| >>> # The following creates two independent Geometric distributions | |||
| >>> n = nn.Geometric([0.5, 0.5], dtype=mstype.int32) | |||
| >>> | |||
| >>> # A Geometric distribution can be initilize without arguments | |||
| >>> # A Geometric distribution can be initilized without arguments | |||
| >>> # In this case, probs must be passed in through construct. | |||
| >>> n = nn.Geometric(dtype=mstype.int32) | |||
| >>> | |||
| @@ -51,16 +52,16 @@ class Geometric(Distribution): | |||
| >>> self.g1 = nn.Geometric(0.5, dtype=mstype.int32) | |||
| >>> self.g2 = nn.Geometric(dtype=mstype.int32) | |||
| >>> | |||
| >>> # All the following calls in construct are valid | |||
| >>> # Tthe following calls are valid in construct | |||
| >>> def construct(self, value, probs_b, probs_a): | |||
| >>> | |||
| >>> # Similar to calls can be made to other probability functions | |||
| >>> # Similar calls can be made to other probability functions | |||
| >>> # by replacing 'prob' with the name of the function | |||
| >>> ans = self.g1('prob', value) | |||
| >>> # Evaluate with the respect to distribution b | |||
| >>> ans = self.g1('prob', value, probs_b) | |||
| >>> | |||
| >>> # Additional probs must be passed in through construct | |||
| >>> # Probs must be passed in through construct | |||
| >>> ans = self.g2('prob', value, probs_a) | |||
| >>> | |||
| >>> # Functions 'sd', 'var', 'entropy' have the same usage with 'mean' | |||
| @@ -69,7 +70,7 @@ class Geometric(Distribution): | |||
| >>> # Will return mean_b | |||
| >>> ans = self.g1('mean', probs_b) | |||
| >>> | |||
| >>> # Additional probs must be passed in through construct | |||
| >>> # Probs must be passed in through construct | |||
| >>> ans = self.g2('mean', probs_a) | |||
| >>> | |||
| >>> # Usage of 'kl_loss' and 'cross_entropy' are similar | |||
| @@ -102,23 +103,22 @@ class Geometric(Distribution): | |||
| else: | |||
| self._probs = probs | |||
| self.minval = np.finfo(np.float).tiny | |||
| # ops needed for the class | |||
| self.log = P.Log() | |||
| self.add = P.TensorAdd() | |||
| self.mul = P.Mul() | |||
| self.sqrt = P.Sqrt() | |||
| self.realdiv = P.RealDiv() | |||
| self.shape = P.Shape() | |||
| self.dType = P.DType() | |||
| self.const = P.ScalarToArray() | |||
| self.dtypeop = P.DType() | |||
| self.fill = P.Fill() | |||
| self.floor = P.Floor() | |||
| self.issubclass = P.IsSubClass() | |||
| self.const = P.ScalarToArray() | |||
| self.less = P.Less() | |||
| self.normal = P.Normal(seed=seed) | |||
| self.sq = P.Square() | |||
| self.select = P.Select() | |||
| self.fill = P.Fill() | |||
| self.log = P.Log() | |||
| self.pow = P.Pow() | |||
| self.select = P.Select() | |||
| self.shape = P.Shape() | |||
| self.sq = P.Square() | |||
| self.sqrt = P.Sqrt() | |||
| self.uniform = P.UniformReal(seed=seed) | |||
| def extend_repr(self): | |||
| if self.is_scalar_batch: | |||
| @@ -140,7 +140,7 @@ class Geometric(Distribution): | |||
| MEAN(Geo) = \fratc{1 - probs1}{probs1} | |||
| """ | |||
| if name == 'mean': | |||
| probs1 = self._probs if probs1 is None else probs1 | |||
| probs1 = self.probs if probs1 is None else probs1 | |||
| return (1. - probs1) / probs1 | |||
| return None | |||
| @@ -160,7 +160,7 @@ class Geometric(Distribution): | |||
| VAR(Geo) = \fract{1 - probs1}{probs1 ^ {2}} | |||
| """ | |||
| if name in self._variance_functions: | |||
| probs1 = self._probs if probs1 is None else probs1 | |||
| probs1 = self.probs if probs1 is None else probs1 | |||
| return (1.0 - probs1) / self.sq(probs1) | |||
| return None | |||
| @@ -170,7 +170,7 @@ class Geometric(Distribution): | |||
| H(Geo) = \fract{-1 * probs0 \log_2 (1-probs0)\ - prob1 * \log_2 (1-probs1)\ }{probs1} | |||
| """ | |||
| if name == 'entropy': | |||
| probs1 = self._probs if probs is None else probs | |||
| probs1 = self.probs if probs is None else probs | |||
| probs0 = 1.0 - probs1 | |||
| return (-probs0 * self.log(probs0) - probs1 * self.log(probs1)) / probs1 | |||
| return None | |||
| @@ -183,7 +183,7 @@ class Geometric(Distribution): | |||
| name (str): name of the funtion. Should always be "cross_entropy" when passed in from construct. | |||
| dist (str): type of the distributions. Should be "Geometric" in this case. | |||
| probs1_b (Tensor): probability of success of distribution b. | |||
| probs1_a (Tensor): probability of success of distribution a. Default: self._probs. | |||
| probs1_a (Tensor): probability of success of distribution a. Default: self.probs. | |||
| """ | |||
| if name == 'cross_entropy' and dist == 'Geometric': | |||
| return self._entropy(probs=probs1_a) + self._kl_loss(name, dist, probs1_b, probs1_a) | |||
| @@ -196,15 +196,15 @@ class Geometric(Distribution): | |||
| Args: | |||
| name (str): name of the function. Should be "prob" when passed in from construct. | |||
| value (Tensor): a Tensor composed of only natural numbers. | |||
| probs (Tensor): probability of success. Default: self._probs. | |||
| probs (Tensor): probability of success. Default: self.probs. | |||
| .. math:: | |||
| pmf(k) = probs0 ^k * probs1 if k >= 0; | |||
| pmf(k) = 0 if k < 0. | |||
| """ | |||
| if name in self._prob_functions: | |||
| probs1 = self._probs if probs is None else probs | |||
| dtype = self.dType(value) | |||
| probs1 = self.probs if probs is None else probs | |||
| dtype = self.dtypeop(value) | |||
| if self.issubclass(dtype, mstype.int_): | |||
| pass | |||
| elif self.issubclass(dtype, mstype.float_): | |||
| @@ -224,7 +224,7 @@ class Geometric(Distribution): | |||
| Args: | |||
| name (str): name of the function. | |||
| value (Tensor): a Tensor composed of only natural numbers. | |||
| probs (Tensor): probability of success. Default: self._probs. | |||
| probs (Tensor): probability of success. Default: self.probs. | |||
| .. math:: | |||
| cdf(k) = 1 - probs0 ^ (k+1) if k >= 0; | |||
| @@ -232,9 +232,9 @@ class Geometric(Distribution): | |||
| """ | |||
| if name in self._cdf_survival_functions: | |||
| probs1 = self._probs if probs is None else probs | |||
| probs1 = self.probs if probs is None else probs | |||
| probs0 = 1.0 - probs1 | |||
| dtype = self.dType(value) | |||
| dtype = self.dtypeop(value) | |||
| if self.issubclass(dtype, mstype.int_): | |||
| pass | |||
| elif self.issubclass(dtype, mstype.float_): | |||
| @@ -255,16 +255,16 @@ class Geometric(Distribution): | |||
| name (str): name of the funtion. | |||
| dist (str): type of the distributions. Should be "Geometric" in this case. | |||
| probs1_b (Tensor): probability of success of distribution b. | |||
| probs1_a (Tensor): probability of success of distribution a. Default: self._probs. | |||
| probs1_a (Tensor): probability of success of distribution a. Default: self.probs. | |||
| .. math:: | |||
| KL(a||b) = \log(\fract{probs1_a}{probs1_b}) + \fract{probs0_a}{probs1_a} * \log(\fract{probs0_a}{probs0_b}) | |||
| """ | |||
| if name in self._divergence_functions and dist == 'Geometric': | |||
| probs1_a = self._probs if probs1_a is None else probs1_a | |||
| probs1_a = self.probs if probs1_a is None else probs1_a | |||
| probs0_a = 1.0 - probs1_a | |||
| probs0_b = 1.0 - probs1_b | |||
| return self.log(probs1_a / probs1_b) + self.mul(probs0_a / probs1_a, self.log(probs0_a / probs0_b)) | |||
| return self.log(probs1_a / probs1_b) + (probs0_a / probs1_a) * self.log(probs0_a / probs0_b) | |||
| return None | |||
| def _sample(self, name, shape=(), probs=None): | |||
| @@ -274,12 +274,15 @@ class Geometric(Distribution): | |||
| Args: | |||
| name (str): name of the function. Should always be 'sample' when passed in from construct. | |||
| shape (tuple): shape of the sample. Default: (). | |||
| probs (Tensor): probs1 of the samples. Default: self._probs. | |||
| probs (Tensor): probability of success. Default: self.probs. | |||
| Returns: | |||
| Tensor, shape is shape + batch_shape. | |||
| """ | |||
| if name == 'sample': | |||
| probs = self._probs if probs is None else probs | |||
| return self.fill(mstype.float32, shape + self.shape(probs), 1.0) | |||
| probs = self.probs if probs is None else probs | |||
| minval = self.const(self.minval) | |||
| maxval = self.const(1.0) | |||
| sample_uniform = self.uniform(shape + self.shape(probs), minval, maxval) | |||
| return self.floor(self.log(sample_uniform) / self.log(1.0 - probs)) | |||
| return None | |||
| @@ -26,22 +26,21 @@ class Normal(Distribution): | |||
| Normal distribution. | |||
| Args: | |||
| mean (int, float, list, numpy.ndarray, Tensor, Parameter): mean of the Gaussian distribution. | |||
| sd (int, float, list, numpy.ndarray, Tensor, Parameter): stddev of the Gaussian distribution. | |||
| mean (int, float, list, numpy.ndarray, Tensor, Parameter): mean of the Normal distribution. | |||
| sd (int, float, list, numpy.ndarray, Tensor, Parameter): stddev of the Normal distribution. | |||
| seed (int): seed to use in sampling. Default: 0. | |||
| dtype (mindspore.dtype): type of the distribution. Default: mstype.float32. | |||
| name (str): name of the distribution. Default: Normal. | |||
| Note: | |||
| Standard deviation should be greater than zero. | |||
| Dist_spec_args are mean and sd. | |||
| Examples: | |||
| >>> # To initialize a normal distribution of mean 3.0 and standard deviation 4.0 | |||
| >>> # To initialize a Normal distribution of mean 3.0 and standard deviation 4.0 | |||
| >>> n = nn.Normal(3.0, 4.0, dtype=mstype.float32) | |||
| >>> | |||
| >>> # The following create two independent normal distributions | |||
| >>> # The following creates two independent Normal distributions | |||
| >>> n = nn.Normal([3.0, 3.0], [4.0, 4.0], dtype=mstype.float32) | |||
| >>> | |||
| >>> # A normal distribution can be initilize without arguments | |||
| @@ -55,16 +54,16 @@ class Normal(Distribution): | |||
| >>> self.n1 = nn.Normal(0.0, 1.0, dtype=mstype.float32) | |||
| >>> self.n2 = nn.Normal(dtype=mstype.float32) | |||
| >>> | |||
| >>> # All the following calls in construct are valid | |||
| >>> # The following calls are valid in construct | |||
| >>> def construct(self, value, mean_b, sd_b, mean_a, sd_a): | |||
| >>> | |||
| >>> # Similar to calls can be made to other probability functions | |||
| >>> # Similar calls can be made to other probability functions | |||
| >>> # by replacing 'prob' with the name of the function | |||
| >>> ans = self.n1('prob', value) | |||
| >>> # Evaluate with the respect to distribution b | |||
| >>> ans = self.n1('prob', value, mean_b, sd_b) | |||
| >>> | |||
| >>> # Additional mean and sd must be passed in through construct | |||
| >>> # mean and sd must be passed in through construct | |||
| >>> ans = self.n2('prob', value, mean_a, sd_a) | |||
| >>> | |||
| >>> # Functions 'sd', 'var', 'entropy' have the same usage with 'mean' | |||
| @@ -73,7 +72,7 @@ class Normal(Distribution): | |||
| >>> # Will return mean_b | |||
| >>> ans = self.n1('mean', mean_b, sd_b) | |||
| >>> | |||
| >>> # Additional mean and sd must be passed in through construct | |||
| >>> # mean and sd must be passed in through construct | |||
| >>> ans = self.n2('mean', mean_a, sd_a) | |||
| >>> | |||
| >>> # Usage of 'kl_loss' and 'cross_entropy' are similar | |||
| @@ -111,20 +110,16 @@ class Normal(Distribution): | |||
| self.seed = seed | |||
| #ops needed for the class | |||
| self.const = P.ScalarToArray() | |||
| self.erf = P.Erf() | |||
| self.exp = P.Exp() | |||
| self.expm1 = P.Expm1() if get_context('device_target') == 'Ascend' else self._expm1_by_step | |||
| self.fill = P.Fill() | |||
| self.log = P.Log() | |||
| self.shape = P.Shape() | |||
| self.sq = P.Square() | |||
| self.log = P.Log() | |||
| self.sqrt = P.Sqrt() | |||
| self.realdiv = P.RealDiv() | |||
| self.expm1 = P.Expm1() if get_context('device_target') == 'Ascend' else self._expm1_by_step | |||
| self.shape = P.Shape() | |||
| self.zeroslike = P.ZerosLike() | |||
| self.const = P.ScalarToArray() | |||
| self.erf = P.Erf() | |||
| self.fill = P.Fill() | |||
| def extend_repr(self): | |||
| if self.is_scalar_batch: | |||
| @@ -231,8 +226,8 @@ class Normal(Distribution): | |||
| if name in self._cdf_survival_functions: | |||
| mean = self._mean_value if mean is None else mean | |||
| sd = self._sd_value if sd is None else sd | |||
| sqrt2 = self.sqrt(self.fill(mstype.float32, self.shape(sd), 2.0)) | |||
| adjusted = (value - mean) / self.mul(sd, sqrt2) | |||
| sqrt2 = self.sqrt(self.const(2.0)) | |||
| adjusted = (value - mean) / (sd * sqrt2) | |||
| return 0.5 * (1.0 + self.erf(adjusted)) | |||
| return None | |||
| @@ -276,11 +271,11 @@ class Normal(Distribution): | |||
| if name == 'sample': | |||
| mean = self._mean_value if mean is None else mean | |||
| sd = self._sd_value if sd is None else sd | |||
| batch_shape = self.shape(self.add(self.zeroslike(mean), self.zeroslike(sd))) | |||
| batch_shape = self.shape(self.zeroslike(mean) + self.zeroslike(sd)) | |||
| sample_shape = shape + batch_shape | |||
| mean_zero = self.const(0.0) | |||
| sd_one = self.const(1.0) | |||
| sample_norm = C.normal(sample_shape, mean_zero, sd_one, self.seed) | |||
| sample = self.add(mean, self.mul(sample_norm, sd)) | |||
| sample = mean + sample_norm * sd | |||
| return sample | |||
| return None | |||
| @@ -37,10 +37,10 @@ class Uniform(Distribution): | |||
| >>> # To initialize a Uniform distribution of mean 3.0 and standard deviation 4.0 | |||
| >>> n = nn.Uniform(0.0, 1.0, dtype=mstype.float32) | |||
| >>> | |||
| >>> # The following create two independent Uniform distributions | |||
| >>> # The following creates two independent Uniform distributions | |||
| >>> n = nn.Uniform([0.0, 0.0], [1.0, 2.0], dtype=mstype.float32) | |||
| >>> | |||
| >>> # A Uniform distribution can be initilize without arguments | |||
| >>> # A Uniform distribution can be initilized without arguments | |||
| >>> # In this case, high and low must be passed in through construct. | |||
| >>> n = nn.Uniform(dtype=mstype.float32) | |||
| >>> | |||
| @@ -54,13 +54,13 @@ class Uniform(Distribution): | |||
| >>> # All the following calls in construct are valid | |||
| >>> def construct(self, value, low_b, high_b, low_a, high_a): | |||
| >>> | |||
| >>> # Similar to calls can be made to other probability functions | |||
| >>> # Similar calls can be made to other probability functions | |||
| >>> # by replacing 'prob' with the name of the function | |||
| >>> ans = self.u1('prob', value) | |||
| >>> # Evaluate with the respect to distribution b | |||
| >>> ans = self.u1('prob', value, low_b, high_b) | |||
| >>> | |||
| >>> # Additional high and low must be passed in through construct | |||
| >>> # High and low must be passed in through construct | |||
| >>> ans = self.u2('prob', value, low_a, high_a) | |||
| >>> | |||
| >>> # Functions 'sd', 'var', 'entropy' have the same usage with 'mean' | |||
| @@ -69,7 +69,7 @@ class Uniform(Distribution): | |||
| >>> # Will return low_b | |||
| >>> ans = self.u1('mean', low_b, high_b) | |||
| >>> | |||
| >>> # Additional high and low must be passed in through construct | |||
| >>> # High and low must be passed in through construct | |||
| >>> ans = self.u2('mean', low_a, high_a) | |||
| >>> | |||
| >>> # Usage of 'kl_loss' and 'cross_entropy' are similar | |||
| @@ -100,7 +100,7 @@ class Uniform(Distribution): | |||
| if low is not None and high is not None: | |||
| self._low = convert_to_batch(low, self._broadcast_shape, dtype) | |||
| self._high = convert_to_batch(high, self._broadcast_shape, dtype) | |||
| check_greater(self._low, self._high, "low value", "high value") | |||
| check_greater(self.low, self.high, "low value", "high value") | |||
| else: | |||
| self._low = low | |||
| self._high = high | |||
| @@ -109,20 +109,17 @@ class Uniform(Distribution): | |||
| self.const = P.ScalarToArray() | |||
| self.dtypeop = P.DType() | |||
| self.exp = P.Exp() | |||
| self.log = P.Log() | |||
| self.add = P.TensorAdd() | |||
| self.mul = P.Mul() | |||
| self.sqrt = P.Sqrt() | |||
| self.realdiv = P.RealDiv() | |||
| self.fill = P.Fill() | |||
| self.less = P.Less() | |||
| self.lessequal = P.LessEqual() | |||
| self.sq = P.Square() | |||
| self.select = P.Select() | |||
| self.zeroslike = P.ZerosLike() | |||
| self.log = P.Log() | |||
| self.logicaland = P.LogicalAnd() | |||
| self.fill = P.Fill() | |||
| self.select = P.Select() | |||
| self.shape = P.Shape() | |||
| self.normal = P.Normal(seed=seed) | |||
| self.sq = P.Square() | |||
| self.sqrt = P.Sqrt() | |||
| self.uniform = P.UniformReal(seed=seed) | |||
| self.zeroslike = P.ZerosLike() | |||
| def extend_repr(self): | |||
| if self.is_scalar_batch: | |||
| @@ -152,8 +149,8 @@ class Uniform(Distribution): | |||
| range(U) = high -low | |||
| """ | |||
| if name == 'range': | |||
| low = self._low if low is None else low | |||
| high = self._high if high is None else high | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| return high - low | |||
| return None | |||
| @@ -163,8 +160,8 @@ class Uniform(Distribution): | |||
| MEAN(U) = \fract{low + high}{2}. | |||
| """ | |||
| if name == 'mean': | |||
| low = self._low if low is None else low | |||
| high = self._high if high is None else high | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| return (low + high) / 2. | |||
| return None | |||
| @@ -174,8 +171,8 @@ class Uniform(Distribution): | |||
| VAR(U) = \fract{(high -low) ^ 2}{12}. | |||
| """ | |||
| if name in self._variance_functions: | |||
| low = self._low if low is None else low | |||
| high = self._high if high is None else high | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| return self.sq(high - low) / 12.0 | |||
| return None | |||
| @@ -185,8 +182,8 @@ class Uniform(Distribution): | |||
| H(U) = \log(high - low). | |||
| """ | |||
| if name == 'entropy': | |||
| low = self._low if low is None else low | |||
| high = self._high if high is None else high | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| return self.log(high - low) | |||
| return None | |||
| @@ -199,8 +196,8 @@ class Uniform(Distribution): | |||
| dist (str): type of the distributions. Should be "Uniform" in this case. | |||
| low_b (Tensor): lower bound of distribution b. | |||
| high_b (Tensor): upper bound of distribution b. | |||
| low_a (Tensor): lower bound of distribution a. Default: self._low. | |||
| high_a (Tensor): upper bound of distribution a. Default: self._high. | |||
| low_a (Tensor): lower bound of distribution a. Default: self.low. | |||
| high_a (Tensor): upper bound of distribution a. Default: self.high. | |||
| """ | |||
| if name == 'cross_entropy' and dist == 'Uniform': | |||
| return self._entropy(low=low_a, high=high_a) + self._kl_loss(name, dist, low_b, high_b, low_a, high_a) | |||
| @@ -213,8 +210,8 @@ class Uniform(Distribution): | |||
| Args: | |||
| name (str): name of the function. | |||
| value (Tensor): value to be evaluated. | |||
| low (Tensor): lower bound of the distribution. Default: self._low. | |||
| high (Tensor): upper bound of the distribution. Default: self._high. | |||
| low (Tensor): lower bound of the distribution. Default: self.low. | |||
| high (Tensor): upper bound of the distribution. Default: self.high. | |||
| .. math:: | |||
| pdf(x) = 0 if x < low; | |||
| @@ -243,12 +240,12 @@ class Uniform(Distribution): | |||
| dist (str): type of the distributions. Should be "Uniform" in this case. | |||
| low_b (Tensor): lower bound of distribution b. | |||
| high_b (Tensor): upper bound of distribution b. | |||
| low_a (Tensor): lower bound of distribution a. Default: self._low. | |||
| high_a (Tensor): upper bound of distribution a. Default: self._high. | |||
| low_a (Tensor): lower bound of distribution a. Default: self.low. | |||
| high_a (Tensor): upper bound of distribution a. Default: self.high. | |||
| """ | |||
| if name in self._divergence_functions and dist == 'Uniform': | |||
| low_a = self._low if low_a is None else low_a | |||
| high_a = self._high if high_a is None else high_a | |||
| low_a = self.low if low_a is None else low_a | |||
| high_a = self.high if high_a is None else high_a | |||
| kl = self.log(high_b - low_b) / self.log(high_a - low_a) | |||
| comp = self.logicaland(self.lessequal(low_b, low_a), self.lessequal(high_a, high_b)) | |||
| return self.select(comp, kl, self.log(self.zeroslike(kl))) | |||
| @@ -261,8 +258,8 @@ class Uniform(Distribution): | |||
| Args: | |||
| name (str): name of the function. | |||
| value (Tensor): value to be evaluated. | |||
| low (Tensor): lower bound of the distribution. Default: self._low. | |||
| high (Tensor): upper bound of the distribution. Default: self._high. | |||
| low (Tensor): lower bound of the distribution. Default: self.low. | |||
| high (Tensor): upper bound of the distribution. Default: self.high. | |||
| .. math:: | |||
| cdf(x) = 0 if x < low; | |||
| @@ -270,8 +267,8 @@ class Uniform(Distribution): | |||
| cdf(x) = 1 if x > high; | |||
| """ | |||
| if name in self._cdf_survival_functions: | |||
| low = self._low if low is None else low | |||
| high = self._high if high is None else high | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| prob = (value - low) / (high - low) | |||
| broadcast_shape = self.shape(prob) | |||
| zeros = self.fill(self.dtypeop(prob), broadcast_shape, 0.0) | |||
| @@ -283,9 +280,25 @@ class Uniform(Distribution): | |||
| return None | |||
| def _sample(self, name, shape=(), low=None, high=None): | |||
| """ | |||
| Sampling. | |||
| Args: | |||
| name (str): name of the function. Should always be 'sample' when passed in from construct. | |||
| shape (tuple): shape of the sample. Default: (). | |||
| low (Tensor): lower bound of the distribution. Default: self.low. | |||
| high (Tensor): upper bound of the distribution. Default: self.high. | |||
| Returns: | |||
| Tensor, shape is shape + batch_shape. | |||
| """ | |||
| if name == 'sample': | |||
| low = self._low if low is None else low | |||
| high = self._high if high is None else high | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| broadcast_shape = self.shape(low + high) | |||
| return self.fill(mstype.float32, shape + broadcast_shape, 1.0) | |||
| l_zero = self.const(0.0) | |||
| h_one = self.const(1.0) | |||
| sample_uniform = self.uniform(shape + broadcast_shape, l_zero, h_one) | |||
| sample = (high - low) * sample_uniform + low | |||
| return sample | |||
| return None | |||
| @@ -25,7 +25,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Prob(nn.Cell): | |||
| """ | |||
| Test class: probability of bernoulli distribution. | |||
| Test class: probability of Bernoulli distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(Prob, self).__init__() | |||
| @@ -50,7 +50,7 @@ def test_pmf(): | |||
| class LogProb(nn.Cell): | |||
| """ | |||
| Test class: log probability of bernoulli distribution. | |||
| Test class: log probability of Bernoulli distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(LogProb, self).__init__() | |||
| @@ -74,7 +74,7 @@ def test_log_likelihood(): | |||
| class KL(nn.Cell): | |||
| """ | |||
| Test class: kl_loss between bernoulli distributions. | |||
| Test class: kl_loss between Bernoulli distributions. | |||
| """ | |||
| def __init__(self): | |||
| super(KL, self).__init__() | |||
| @@ -100,7 +100,7 @@ def test_kl_loss(): | |||
| class Basics(nn.Cell): | |||
| """ | |||
| Test class: mean/sd/mode of bernoulli distribution. | |||
| Test class: mean/sd/mode of Bernoulli distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(Basics, self).__init__() | |||
| @@ -112,7 +112,7 @@ class Basics(nn.Cell): | |||
| def test_basics(): | |||
| """ | |||
| Test mean/standard deviation/mode and probs. | |||
| Test mean/standard deviation/mode. | |||
| """ | |||
| basics = Basics() | |||
| mean, sd, mode = basics() | |||
| @@ -123,14 +123,10 @@ def test_basics(): | |||
| assert (np.abs(mean.asnumpy() - expect_mean) < tol).all() | |||
| assert (np.abs(sd.asnumpy() - expect_sd) < tol).all() | |||
| assert (np.abs(mode.asnumpy() - expect_mode) < tol).all() | |||
| b = nn.Bernoulli([0.7, 0.5], dtype=dtype.int32) | |||
| probs = b.probs() | |||
| expect_probs = [0.7, 0.5] | |||
| assert (np.abs(probs.asnumpy() - expect_probs) < tol).all() | |||
| class Sampling(nn.Cell): | |||
| """ | |||
| Test class: log probability of bernoulli distribution. | |||
| Test class: log probability of Bernoulli distribution. | |||
| """ | |||
| def __init__(self, shape, seed=0): | |||
| super(Sampling, self).__init__() | |||
| @@ -202,7 +198,7 @@ def test_logcdf(): | |||
| class SF(nn.Cell): | |||
| """ | |||
| Test class: survival function of bernoulli distributions. | |||
| Test class: survival function of Bernoulli distributions. | |||
| """ | |||
| def __init__(self): | |||
| super(SF, self).__init__() | |||
| @@ -227,7 +223,7 @@ def test_survival(): | |||
| class LogSF(nn.Cell): | |||
| """ | |||
| Test class: log survival function of bernoulli distributions. | |||
| Test class: log survival function of Bernoulli distributions. | |||
| """ | |||
| def __init__(self): | |||
| super(LogSF, self).__init__() | |||
| @@ -251,7 +247,7 @@ def test_log_survival(): | |||
| class EntropyH(nn.Cell): | |||
| """ | |||
| Test class: entropy of bernoulli distributions. | |||
| Test class: entropy of Bernoulli distributions. | |||
| """ | |||
| def __init__(self): | |||
| super(EntropyH, self).__init__() | |||
| @@ -109,7 +109,7 @@ class Basics(nn.Cell): | |||
| def test_basics(): | |||
| """ | |||
| Test mean/standard deviation and range. | |||
| Test mean/standard/mode deviation. | |||
| """ | |||
| basics = Basics() | |||
| mean, sd, mode = basics() | |||
| @@ -121,6 +121,30 @@ def test_basics(): | |||
| assert (np.abs(sd.asnumpy() - expect_sd) < tol).all() | |||
| assert (np.abs(mode.asnumpy() - expect_mode) < tol).all() | |||
| class Sampling(nn.Cell): | |||
| """ | |||
| Test class: sample of Exponential distribution. | |||
| """ | |||
| def __init__(self, shape, seed=0): | |||
| super(Sampling, self).__init__() | |||
| self.e = nn.Exponential([[1.0], [0.5]], seed=seed, dtype=dtype.float32) | |||
| self.shape = shape | |||
| @ms_function | |||
| def construct(self, rate=None): | |||
| return self.e('sample', self.shape, rate) | |||
| def test_sample(): | |||
| """ | |||
| Test sample. | |||
| """ | |||
| shape = (2, 3) | |||
| seed = 10 | |||
| rate = Tensor([1.0, 2.0, 3.0], dtype=dtype.float32) | |||
| sample = Sampling(shape, seed=seed) | |||
| output = sample(rate) | |||
| assert output.shape == (2, 3, 3) | |||
| class CDF(nn.Cell): | |||
| """ | |||
| Test class: cdf of Exponential distribution. | |||
| @@ -99,7 +99,7 @@ def test_kl_loss(): | |||
| class Basics(nn.Cell): | |||
| """ | |||
| Test class: mean/sd of Geometric distribution. | |||
| Test class: mean/sd/mode of Geometric distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(Basics, self).__init__() | |||
| @@ -111,7 +111,7 @@ class Basics(nn.Cell): | |||
| def test_basics(): | |||
| """ | |||
| Test mean/standard deviation/mode and probs. | |||
| Test mean/standard deviation/mode. | |||
| """ | |||
| basics = Basics() | |||
| mean, sd, mode = basics() | |||
| @@ -122,10 +122,28 @@ def test_basics(): | |||
| assert (np.abs(mean.asnumpy()- expect_mean) < tol).all() | |||
| assert (np.abs(sd.asnumpy() - expect_sd) < tol).all() | |||
| assert (np.abs(mode.asnumpy() - expect_mode) < tol).all() | |||
| b = nn.Geometric([0.7, 0.5], dtype=dtype.int32) | |||
| probs = b.probs() | |||
| expect_probs = [0.7, 0.5] | |||
| assert (np.abs(probs.asnumpy() - expect_probs) < tol).all() | |||
| class Sampling(nn.Cell): | |||
| """ | |||
| Test class: log probability of bernoulli distribution. | |||
| """ | |||
| def __init__(self, shape, seed=0): | |||
| super(Sampling, self).__init__() | |||
| self.g = nn.Geometric([0.7, 0.5], seed=seed, dtype=dtype.int32) | |||
| self.shape = shape | |||
| @ms_function | |||
| def construct(self, probs=None): | |||
| return self.g('sample', self.shape, probs) | |||
| def test_sample(): | |||
| """ | |||
| Test sample. | |||
| """ | |||
| shape = (2, 3) | |||
| sample = Sampling(shape) | |||
| output = sample() | |||
| assert output.shape == (2, 3, 2) | |||
| class CDF(nn.Cell): | |||
| """ | |||
| @@ -25,7 +25,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class Prob(nn.Cell): | |||
| """ | |||
| Test class: probability of normal distribution. | |||
| Test class: probability of Normal distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(Prob, self).__init__() | |||
| @@ -48,7 +48,7 @@ def test_pdf(): | |||
| class LogProb(nn.Cell): | |||
| """ | |||
| Test class: log probability of normal distribution. | |||
| Test class: log probability of Normal distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(LogProb, self).__init__() | |||
| @@ -72,7 +72,7 @@ def test_log_likelihood(): | |||
| class KL(nn.Cell): | |||
| """ | |||
| Test class: kl_loss of normal distribution. | |||
| Test class: kl_loss of Normal distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(KL, self).__init__() | |||
| @@ -106,7 +106,7 @@ def test_kl_loss(): | |||
| class Basics(nn.Cell): | |||
| """ | |||
| Test class: mean/sd of normal distribution. | |||
| Test class: mean/sd/mode of Normal distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(Basics, self).__init__() | |||
| @@ -131,7 +131,7 @@ def test_basics(): | |||
| class Sampling(nn.Cell): | |||
| """ | |||
| Test class: sample of normal distribution. | |||
| Test class: sample of Normal distribution. | |||
| """ | |||
| def __init__(self, shape, seed=0): | |||
| super(Sampling, self).__init__() | |||
| @@ -156,7 +156,7 @@ def test_sample(): | |||
| class CDF(nn.Cell): | |||
| """ | |||
| Test class: cdf of normal distribution. | |||
| Test class: cdf of Normal distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(CDF, self).__init__() | |||
| @@ -180,7 +180,7 @@ def test_cdf(): | |||
| class LogCDF(nn.Cell): | |||
| """ | |||
| Test class: log_cdf of normal distribution. | |||
| Test class: log_cdf of Mormal distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(LogCDF, self).__init__() | |||
| @@ -203,7 +203,7 @@ def test_log_cdf(): | |||
| class SF(nn.Cell): | |||
| """ | |||
| Test class: survival function of normal distribution. | |||
| Test class: survival function of Normal distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(SF, self).__init__() | |||
| @@ -226,7 +226,7 @@ def test_survival(): | |||
| class LogSF(nn.Cell): | |||
| """ | |||
| Test class: log survival function of normal distribution. | |||
| Test class: log survival function of Normal distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(LogSF, self).__init__() | |||
| @@ -249,7 +249,7 @@ def test_log_survival(): | |||
| class EntropyH(nn.Cell): | |||
| """ | |||
| Test class: entropy of normal distribution. | |||
| Test class: entropy of Normal distribution. | |||
| """ | |||
| def __init__(self): | |||
| super(EntropyH, self).__init__() | |||
| @@ -272,7 +272,7 @@ def test_entropy(): | |||
| class CrossEntropy(nn.Cell): | |||
| """ | |||
| Test class: cross entropy between normal distribution. | |||
| Test class: cross entropy between Normal distributions. | |||
| """ | |||
| def __init__(self): | |||
| super(CrossEntropy, self).__init__() | |||
| @@ -111,7 +111,7 @@ class Basics(nn.Cell): | |||
| def test_basics(): | |||
| """ | |||
| Test mean/standard deviation/mode. | |||
| Test mean/standard deviation. | |||
| """ | |||
| basics = Basics() | |||
| mean, sd = basics() | |||
| @@ -121,6 +121,31 @@ def test_basics(): | |||
| assert (np.abs(mean.asnumpy() - expect_mean) < tol).all() | |||
| assert (np.abs(sd.asnumpy() - expect_sd) < tol).all() | |||
| class Sampling(nn.Cell): | |||
| """ | |||
| Test class: sample of Uniform distribution. | |||
| """ | |||
| def __init__(self, shape, seed=0): | |||
| super(Sampling, self).__init__() | |||
| self.u = nn.Uniform([0.0], [[1.0], [2.0]], seed=seed, dtype=dtype.float32) | |||
| self.shape = shape | |||
| @ms_function | |||
| def construct(self, low=None, high=None): | |||
| return self.u('sample', self.shape, low, high) | |||
| def test_sample(): | |||
| """ | |||
| Test sample. | |||
| """ | |||
| shape = (2, 3) | |||
| seed = 10 | |||
| low = Tensor([1.0], dtype=dtype.float32) | |||
| high = Tensor([2.0, 3.0, 4.0], dtype=dtype.float32) | |||
| sample = Sampling(shape, seed=seed) | |||
| output = sample(low, high) | |||
| assert output.shape == (2, 3, 3) | |||
| class CDF(nn.Cell): | |||
| """ | |||
| Test class: cdf of Uniform distribution. | |||
| @@ -21,7 +21,6 @@ import mindspore.nn as nn | |||
| from mindspore import dtype | |||
| from mindspore import Tensor | |||
| def test_arguments(): | |||
| """ | |||
| Args passing during initialization. | |||
| @@ -111,7 +111,7 @@ class NormalKl(nn.Cell): | |||
| def test_kl(): | |||
| """ | |||
| Test kl_loss | |||
| Test kl_loss. | |||
| """ | |||
| net = NormalKl() | |||
| mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) | |||
| @@ -136,6 +136,9 @@ class NormalCrossEntropy(nn.Cell): | |||
| return h1 + h2 | |||
| def test_cross_entropy(): | |||
| """ | |||
| Test cross entropy between Normal distributions. | |||
| """ | |||
| net = NormalCrossEntropy() | |||
| mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) | |||
| sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) | |||
| @@ -120,7 +120,7 @@ class UniformKl(nn.Cell): | |||
| def test_kl(): | |||
| """ | |||
| Test kl_loss | |||
| Test kl_loss. | |||
| """ | |||
| net = UniformKl() | |||
| low_b = Tensor(np.array([0.0]).astype(np.float32), dtype=dtype.float32) | |||