|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Uniform Distribution"""
- from mindspore.ops import operations as P
- from .distribution import Distribution
- from ...common import dtype as mstype
- from ._utils.utils import convert_to_batch, check_greater
-
- class Uniform(Distribution):
- """
- Example class: Uniform Distribution.
-
- Args:
- low (int, float, list, numpy.ndarray, Tensor, Parameter): lower bound of the distribution.
- high (int, float, list, numpy.ndarray, Tensor, Parameter): upper bound of the distribution.
- seed (int): seed to use in sampling. Default: 0.
- dtype (mindspore.dtype): type of the distribution. Default: mstype.float32.
- name (str): name of the distribution. Default: Uniform.
-
- Note:
- low should be stricly less than high.
- Dist_spec_args are high and low.
-
- Examples:
- >>> # To initialize a Uniform distribution of mean 3.0 and standard deviation 4.0
- >>> n = nn.Uniform(0.0, 1.0, dtype=mstype.float32)
- >>>
- >>> # The following creates two independent Uniform distributions
- >>> n = nn.Uniform([0.0, 0.0], [1.0, 2.0], dtype=mstype.float32)
- >>>
- >>> # A Uniform distribution can be initilized without arguments
- >>> # In this case, high and low must be passed in through construct.
- >>> n = nn.Uniform(dtype=mstype.float32)
- >>>
- >>> # To use Uniform in a network
- >>> class net(Cell):
- >>> def __init__(self)
- >>> super(net, self).__init__():
- >>> self.u1 = nn.Uniform(0.0, 1.0, dtype=mstype.float32)
- >>> self.u2 = nn.Uniform(dtype=mstype.float32)
- >>>
- >>> # All the following calls in construct are valid
- >>> def construct(self, value, low_b, high_b, low_a, high_a):
- >>>
- >>> # Similar calls can be made to other probability functions
- >>> # by replacing 'prob' with the name of the function
- >>> ans = self.u1('prob', value)
- >>> # Evaluate with the respect to distribution b
- >>> ans = self.u1('prob', value, low_b, high_b)
- >>>
- >>> # High and low must be passed in through construct
- >>> ans = self.u2('prob', value, low_a, high_a)
- >>>
- >>> # Functions 'sd', 'var', 'entropy' have the same usage with 'mean'
- >>> # Will return [0.0]
- >>> ans = self.u1('mean')
- >>> # Will return low_b
- >>> ans = self.u1('mean', low_b, high_b)
- >>>
- >>> # High and low must be passed in through construct
- >>> ans = self.u2('mean', low_a, high_a)
- >>>
- >>> # Usage of 'kl_loss' and 'cross_entropy' are similar
- >>> ans = self.u1('kl_loss', 'Uniform', low_b, high_b)
- >>> ans = self.u1('kl_loss', 'Uniform', low_b, high_b, low_a, high_a)
- >>>
- >>> # Additional high and low must be passed in through construct
- >>> ans = self.u2('kl_loss', 'Uniform', low_b, high_b, low_a, high_a)
- >>>
- >>> # Sample Usage
- >>> ans = self.u1('sample')
- >>> ans = self.u1('sample', (2,3))
- >>> ans = self.u1('sample', (2,3), low_b, high_b)
- >>> ans = self.u2('sample', (2,3), low_a, high_a)
- """
-
- def __init__(self,
- low=None,
- high=None,
- seed=0,
- dtype=mstype.float32,
- name="Uniform"):
- """
- Constructor of Uniform distribution.
- """
- param = dict(locals())
- super(Uniform, self).__init__(dtype, name, param)
- if low is not None and high is not None:
- self._low = convert_to_batch(low, self._broadcast_shape, dtype)
- self._high = convert_to_batch(high, self._broadcast_shape, dtype)
- check_greater(self.low, self.high, "low value", "high value")
- else:
- self._low = low
- self._high = high
-
- # ops needed for the class
- self.const = P.ScalarToArray()
- self.dtypeop = P.DType()
- self.exp = P.Exp()
- self.fill = P.Fill()
- self.less = P.Less()
- self.lessequal = P.LessEqual()
- self.log = P.Log()
- self.logicaland = P.LogicalAnd()
- self.select = P.Select()
- self.shape = P.Shape()
- self.sq = P.Square()
- self.sqrt = P.Sqrt()
- self.uniform = P.UniformReal(seed=seed)
- self.zeroslike = P.ZerosLike()
-
- def extend_repr(self):
- if self.is_scalar_batch:
- str_info = f'low = {self.low}, high = {self.high}'
- else:
- str_info = f'batch_shape = {self._broadcast_shape}'
- return str_info
-
- @property
- def low(self):
- """
- Return lower bound of the distribution.
- """
- return self._low
-
- @property
- def high(self):
- """
- Return upper bound of the distribution.
- """
- return self._high
-
- def _range(self, name='range', low=None, high=None):
- r"""
- Return the range of the distribution.
- .. math::
- range(U) = high -low
- """
- if name == 'range':
- low = self.low if low is None else low
- high = self.high if high is None else high
- return high - low
- return None
-
- def _mean(self, name='mean', low=None, high=None):
- r"""
- .. math::
- MEAN(U) = \fract{low + high}{2}.
- """
- if name == 'mean':
- low = self.low if low is None else low
- high = self.high if high is None else high
- return (low + high) / 2.
- return None
-
- def _var(self, name='var', low=None, high=None):
- r"""
- .. math::
- VAR(U) = \fract{(high -low) ^ 2}{12}.
- """
- if name in self._variance_functions:
- low = self.low if low is None else low
- high = self.high if high is None else high
- return self.sq(high - low) / 12.0
- return None
-
- def _entropy(self, name='entropy', low=None, high=None):
- r"""
- .. math::
- H(U) = \log(high - low).
- """
- if name == 'entropy':
- low = self.low if low is None else low
- high = self.high if high is None else high
- return self.log(high - low)
- return None
-
- def _cross_entropy(self, name, dist, low_b, high_b, low_a=None, high_a=None):
- """
- Evaluate cross_entropy between Uniform distributoins.
-
- Args:
- name (str): name of the funtion.
- dist (str): type of the distributions. Should be "Uniform" in this case.
- low_b (Tensor): lower bound of distribution b.
- high_b (Tensor): upper bound of distribution b.
- low_a (Tensor): lower bound of distribution a. Default: self.low.
- high_a (Tensor): upper bound of distribution a. Default: self.high.
- """
- if name == 'cross_entropy' and dist == 'Uniform':
- return self._entropy(low=low_a, high=high_a) + self._kl_loss(name, dist, low_b, high_b, low_a, high_a)
- return None
-
- def _prob(self, name, value, low=None, high=None):
- r"""
- pdf of Uniform distribution.
-
- Args:
- name (str): name of the function.
- value (Tensor): value to be evaluated.
- low (Tensor): lower bound of the distribution. Default: self.low.
- high (Tensor): upper bound of the distribution. Default: self.high.
-
- .. math::
- pdf(x) = 0 if x < low;
- pdf(x) = \fract{1.0}{high -low} if low <= x <= high;
- pdf(x) = 0 if x > high;
- """
- if name in self._prob_functions:
- low = self.low if low is None else low
- high = self.high if high is None else high
- ones = self.fill(self.dtype, self.shape(value), 1.0)
- prob = ones / (high - low)
- broadcast_shape = self.shape(prob)
- zeros = self.fill(self.dtypeop(prob), broadcast_shape, 0.0)
- comp_lo = self.less(value, low)
- comp_hi = self.lessequal(value, high)
- less_than_low = self.select(comp_lo, zeros, prob)
- return self.select(comp_hi, less_than_low, zeros)
- return None
-
- def _kl_loss(self, name, dist, low_b, high_b, low_a=None, high_a=None):
- """
- Evaluate uniform-uniform kl divergence, i.e. KL(a||b).
-
- Args:
- name (str): name of the funtion.
- dist (str): type of the distributions. Should be "Uniform" in this case.
- low_b (Tensor): lower bound of distribution b.
- high_b (Tensor): upper bound of distribution b.
- low_a (Tensor): lower bound of distribution a. Default: self.low.
- high_a (Tensor): upper bound of distribution a. Default: self.high.
- """
- if name in self._divergence_functions and dist == 'Uniform':
- low_a = self.low if low_a is None else low_a
- high_a = self.high if high_a is None else high_a
- kl = self.log(high_b - low_b) / self.log(high_a - low_a)
- comp = self.logicaland(self.lessequal(low_b, low_a), self.lessequal(high_a, high_b))
- return self.select(comp, kl, self.log(self.zeroslike(kl)))
- return None
-
- def _cdf(self, name, value, low=None, high=None):
- r"""
- cdf of Uniform distribution.
-
- Args:
- name (str): name of the function.
- value (Tensor): value to be evaluated.
- low (Tensor): lower bound of the distribution. Default: self.low.
- high (Tensor): upper bound of the distribution. Default: self.high.
-
- .. math::
- cdf(x) = 0 if x < low;
- cdf(x) = \fract{x - low}{high -low} if low <= x <= high;
- cdf(x) = 1 if x > high;
- """
- if name in self._cdf_survival_functions:
- low = self.low if low is None else low
- high = self.high if high is None else high
- prob = (value - low) / (high - low)
- broadcast_shape = self.shape(prob)
- zeros = self.fill(self.dtypeop(prob), broadcast_shape, 0.0)
- ones = self.fill(self.dtypeop(prob), broadcast_shape, 1.0)
- comp_lo = self.less(value, low)
- comp_hi = self.less(value, high)
- less_than_low = self.select(comp_lo, zeros, prob)
- return self.select(comp_hi, less_than_low, ones)
- return None
-
- def _sample(self, name, shape=(), low=None, high=None):
- """
- Sampling.
-
- Args:
- name (str): name of the function. Should always be 'sample' when passed in from construct.
- shape (tuple): shape of the sample. Default: ().
- low (Tensor): lower bound of the distribution. Default: self.low.
- high (Tensor): upper bound of the distribution. Default: self.high.
-
- Returns:
- Tensor, shape is shape + batch_shape.
- """
- if name == 'sample':
- low = self.low if low is None else low
- high = self.high if high is None else high
- broadcast_shape = self.shape(low + high)
- l_zero = self.const(0.0)
- h_one = self.const(1.0)
- sample_uniform = self.uniform(shape + broadcast_shape, l_zero, h_one)
- sample = (high - low) * sample_uniform + low
- return sample
- return None
|