From: @GreyZzzzzzXh Reviewed-by: Signed-off-by:tags/v1.1.0
| @@ -0,0 +1,690 @@ | |||
| # Contents | |||
| - [SqueezeNet Description](#squeezenet-description) | |||
| - [Model Architecture](#model-architecture) | |||
| - [Dataset](#dataset) | |||
| - [Features](#features) | |||
| - [Mixed Precision](#mixed-precision) | |||
| - [Environment Requirements](#environment-requirements) | |||
| - [Quick Start](#quick-start) | |||
| - [Script Description](#script-description) | |||
| - [Script and Sample Code](#script-and-sample-code) | |||
| - [Script Parameters](#script-parameters) | |||
| - [Training Process](#training-process) | |||
| - [Evaluation Process](#evaluation-process) | |||
| - [Model Description](#model-description) | |||
| - [Performance](#performance) | |||
| - [Evaluation Performance](#evaluation-performance) | |||
| - [Inference Performance](#inference-performance) | |||
| - [How to use](#how-to-use) | |||
| - [Inference](#inference) | |||
| - [Continue Training on the Pretrained Model](#continue-training-on-the-pretrained-model) | |||
| - [Transfer Learning](#transfer-learning) | |||
| - [Description of Random Situation](#description-of-random-situation) | |||
| - [ModelZoo Homepage](#modelzoo-homepage) | |||
| # [SqueezeNet Description](#contents) | |||
| SqueezeNet is a lightweight and efficient CNN model proposed by Han et al., published in ICLR-2017. SqueezeNet has 50x fewer parameters than AlexNet, but the model performance (accuracy) is close to AlexNet. | |||
| These are examples of training SqueezeNet/SqueezeNet_Residual with CIFAR-10/ImageNet dataset in MindSpore. SqueezeNet_Residual adds residual operation on the basis of SqueezeNet, which can improve the accuracy of the model without increasing the amount of parameters. | |||
| [Paper](https://arxiv.org/abs/1602.07360): Forrest N. Iandola and Song Han and Matthew W. Moskewicz and Khalid Ashraf and William J. Dally and Kurt Keutzer. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" | |||
| # [Model Architecture](#contents) | |||
| SqueezeNet is composed of fire modules. A fire module mainly includes two layers of convolution operations: one is the squeeze layer using a **1x1 convolution** kernel; the other is an expand layer using a mixture of **1x1** and **3x3 convolution** kernels. | |||
| # [Dataset](#contents) | |||
| Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>) | |||
| - Dataset size:175M,60,000 32*32 colorful images in 10 classes | |||
| - Train:146M,50,000 images | |||
| - Test:29M,10,000 images | |||
| - Data format:binary files | |||
| - Note:Data will be processed in src/dataset.py | |||
| Dataset used: [ImageNet2012](http://www.image-net.org/) | |||
| - Dataset size: 125G, 1250k colorful images in 1000 classes | |||
| - Train: 120G, 1200k images | |||
| - Test: 5G, 50k images | |||
| - Data format: RGB images. | |||
| - Note: Data will be processed in src/dataset.py | |||
| # [Features](#contents) | |||
| ## Mixed Precision | |||
| The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. | |||
| For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. | |||
| # [Environment Requirements](#contents) | |||
| - Hardware(Ascend/GPU) | |||
| - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. | |||
| - Framework | |||
| - [MindSpore](https://www.mindspore.cn/install/en) | |||
| - For more information, please check the resources below: | |||
| - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) | |||
| - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) | |||
| # [Quick Start](#contents) | |||
| After installing MindSpore via the official website, you can start training and evaluation as follows: | |||
| - runing on Ascend | |||
| ``` | |||
| # distributed training | |||
| Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||
| # standalone training | |||
| Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||
| # run evaluation example | |||
| Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH] | |||
| ``` | |||
| - running on GPU | |||
| ``` | |||
| # distributed training example | |||
| sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||
| # standalone training example | |||
| sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||
| # run evaluation example | |||
| sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH] | |||
| ``` | |||
| # [Script Description](#contents) | |||
| ## [Script and Sample Code](#contents) | |||
| ``` | |||
| . | |||
| └── squeezenet | |||
| ├── README.md | |||
| ├── scripts | |||
| ├── run_distribute_train.sh # launch ascend distributed training(8 pcs) | |||
| ├── run_standalone_train.sh # launch ascend standalone training(1 pcs) | |||
| ├── run_distribute_train_gpu.sh # launch gpu distributed training(8 pcs) | |||
| ├── run_standalone_train_gpu.sh # launch gpu standalone training(1 pcs) | |||
| ├── run_eval.sh # launch ascend evaluation | |||
| └── run_eval_gpu.sh # launch gpu evaluation | |||
| ├── src | |||
| ├── config.py # parameter configuration | |||
| ├── dataset.py # data preprocessing | |||
| ├── CrossEntropySmooth.py # loss definition for ImageNet dataset | |||
| ├── lr_generator.py # generate learning rate for each step | |||
| └── squeezenet.py # squeezenet architecture, including squeezenet and squeezenet_residual | |||
| ├── train.py # train net | |||
| ├── eval.py # eval net | |||
| └── export.py # export checkpoint files into geir/onnx | |||
| ``` | |||
| ## [Script Parameters](#contents) | |||
| Parameters for both training and evaluation can be set in config.py | |||
| - config for SqueezeNet, CIFAR-10 dataset | |||
| ```py | |||
| "class_num": 10, # dataset class num | |||
| "batch_size": 32, # batch size of input tensor | |||
| "loss_scale": 1024, # loss scale | |||
| "momentum": 0.9, # momentum | |||
| "weight_decay": 1e-4, # weight decay | |||
| "epoch_size": 120, # only valid for taining, which is always 1 for inference | |||
| "pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size | |||
| "save_checkpoint": True, # whether save checkpoint or not | |||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step | |||
| "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint | |||
| "save_checkpoint_path": "./", # path to save checkpoint | |||
| "warmup_epochs": 5, # number of warmup epoch | |||
| "lr_decay_mode": "poly" # decay mode for generating learning rate | |||
| "lr_init": 0, # initial learning rate | |||
| "lr_end": 0, # final learning rate | |||
| "lr_max": 0.01, # maximum learning rate | |||
| ``` | |||
| - config for SqueezeNet, ImageNet dataset | |||
| ```py | |||
| "class_num": 1000, # dataset class num | |||
| "batch_size": 32, # batch size of input tensor | |||
| "loss_scale": 1024, # loss scale | |||
| "momentum": 0.9, # momentum | |||
| "weight_decay": 7e-5, # weight decay | |||
| "epoch_size": 200, # only valid for taining, which is always 1 for inference | |||
| "pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size | |||
| "save_checkpoint": True, # whether save checkpoint or not | |||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step | |||
| "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint | |||
| "save_checkpoint_path": "./", # path to save checkpoint | |||
| "warmup_epochs": 0, # number of warmup epoch | |||
| "lr_decay_mode": "poly" # decay mode for generating learning rate | |||
| "use_label_smooth": True, # label smooth | |||
| "label_smooth_factor": 0.1, # label smooth factor | |||
| "lr_init": 0, # initial learning rate | |||
| "lr_end": 0, # final learning rate | |||
| "lr_max": 0.01, # maximum learning rate | |||
| ``` | |||
| - config for SqueezeNet_Residual, CIFAR-10 dataset | |||
| ```py | |||
| "class_num": 10, # dataset class num | |||
| "batch_size": 32, # batch size of input tensor | |||
| "loss_scale": 1024, # loss scale | |||
| "momentum": 0.9, # momentum | |||
| "weight_decay": 1e-4, # weight decay | |||
| "epoch_size": 150, # only valid for taining, which is always 1 for inference | |||
| "pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size | |||
| "save_checkpoint": True, # whether save checkpoint or not | |||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step | |||
| "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint | |||
| "save_checkpoint_path": "./", # path to save checkpoint | |||
| "warmup_epochs": 5, # number of warmup epoch | |||
| "lr_decay_mode": "linear" # decay mode for generating learning rate | |||
| "lr_init": 0, # initial learning rate | |||
| "lr_end": 0, # final learning rate | |||
| "lr_max": 0.01, # maximum learning rate | |||
| ``` | |||
| - config for SqueezeNet_Residual, ImageNet dataset | |||
| ```py | |||
| "class_num": 1000, # dataset class num | |||
| "batch_size": 32, # batch size of input tensor | |||
| "loss_scale": 1024, # loss scale | |||
| "momentum": 0.9, # momentum | |||
| "weight_decay": 7e-5, # weight decay | |||
| "epoch_size": 300, # only valid for taining, which is always 1 for inference | |||
| "pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size | |||
| "save_checkpoint": True, # whether save checkpoint or not | |||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step | |||
| "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint | |||
| "save_checkpoint_path": "./", # path to save checkpoint | |||
| "warmup_epochs": 0, # number of warmup epoch | |||
| "lr_decay_mode": "cosine" # decay mode for generating learning rate | |||
| "use_label_smooth": True, # label smooth | |||
| "label_smooth_factor": 0.1, # label smooth factor | |||
| "lr_init": 0, # initial learning rate | |||
| "lr_end": 0, # final learning rate | |||
| "lr_max": 0.01, # maximum learning rate | |||
| ``` | |||
| For more configuration details, please refer the script `config.py`. | |||
| ## [Training Process](#contents) | |||
| ### Usage | |||
| #### Running on Ascend | |||
| ``` | |||
| # distributed training | |||
| Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||
| # standalone training | |||
| Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||
| ``` | |||
| For distributed training, a hccl configuration file with JSON format needs to be created in advance. | |||
| Please follow the instructions in the link [hccl_tools](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). | |||
| Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". Under this, you can find checkpoint file together with result like the followings in log. | |||
| #### Running on GPU | |||
| ``` | |||
| # distributed training example | |||
| sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||
| # standalone training example | |||
| sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||
| ``` | |||
| ### Result | |||
| - Training SqueezeNet with CIFAR-10 dataset | |||
| ``` | |||
| # standalone training result | |||
| epoch: 1 step 1562, loss is 1.7103254795074463 | |||
| epoch: 2 step 1562, loss is 2.06101131439209 | |||
| epoch: 3 step 1562, loss is 1.5594401359558105 | |||
| epoch: 4 step 1562, loss is 1.4127278327941895 | |||
| epoch: 5 step 1562, loss is 1.2140142917633057 | |||
| ... | |||
| ``` | |||
| - Training SqueezeNet with ImageNet dataset | |||
| ``` | |||
| # distribute training result(8 pcs) | |||
| epoch: 1 step 5004, loss is 5.716324329376221 | |||
| epoch: 2 step 5004, loss is 5.350603103637695 | |||
| epoch: 3 step 5004, loss is 4.580031394958496 | |||
| epoch: 4 step 5004, loss is 4.784664154052734 | |||
| epoch: 5 step 5004, loss is 4.136358261108398 | |||
| ... | |||
| ``` | |||
| - Training SqueezeNet_Residual with CIFAR-10 dataset | |||
| ``` | |||
| # standalone training result | |||
| epoch: 1 step 1562, loss is 2.298271656036377 | |||
| epoch: 2 step 1562, loss is 2.2728664875030518 | |||
| epoch: 3 step 1562, loss is 1.9493038654327393 | |||
| epoch: 4 step 1562, loss is 1.7553865909576416 | |||
| epoch: 5 step 1562, loss is 1.3370063304901123 | |||
| ... | |||
| ``` | |||
| - Training SqueezeNet_Residual with ImageNet dataset | |||
| ``` | |||
| # distribute training result(8 pcs) | |||
| epoch: 1 step 5004, loss is 6.802495002746582 | |||
| epoch: 2 step 5004, loss is 6.386072158813477 | |||
| epoch: 3 step 5004, loss is 5.513605117797852 | |||
| epoch: 4 step 5004, loss is 5.312961101531982 | |||
| epoch: 5 step 5004, loss is 4.888848304748535 | |||
| ... | |||
| ``` | |||
| ## [Evaluation Process](#contents) | |||
| ### Usage | |||
| #### Running on Ascend | |||
| ``` | |||
| # evaluation | |||
| Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH] | |||
| ``` | |||
| ``` | |||
| # evaluation example | |||
| sh scripts/run_eval.sh squeezenet cifar10 0 ~/cifar-10-verify-bin train/squeezenet_cifar10-120_1562.ckpt | |||
| ``` | |||
| checkpoint can be produced in training process. | |||
| #### Running on GPU | |||
| ``` | |||
| sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH] | |||
| ``` | |||
| ### Result | |||
| Evaluation result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the followings in log. | |||
| - Evaluating SqueezeNet with CIFAR-10 dataset | |||
| ``` | |||
| result: {'top_1_accuracy': 0.8896233974358975, 'top_5_accuracy': 0.9965945512820513} | |||
| ``` | |||
| - Evaluating SqueezeNet with ImageNet dataset | |||
| ``` | |||
| result: {'top_1_accuracy': 0.5851472471190781, 'top_5_accuracy': 0.8105393725992317} | |||
| ``` | |||
| - Evaluating SqueezeNet_Residual with CIFAR-10 dataset | |||
| ``` | |||
| result: {'top_1_accuracy': 0.9077524038461539, 'top_5_accuracy': 0.9969951923076923} | |||
| ``` | |||
| - Evaluating SqueezeNet_Residual with ImageNet dataset | |||
| ``` | |||
| result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.826324423815621} | |||
| ``` | |||
| # [Model Description](#contents) | |||
| ## [Performance](#contents) | |||
| ### Evaluation Performance | |||
| #### SqueezeNet on CIFAR-10 | |||
| | Parameters | Ascend | | |||
| | -------------------------- | ----------------------------------------------------------- | | |||
| | Model Version | SqueezeNet | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | | |||
| | uploaded Date | 11/06/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | CIFAR-10 | | |||
| | Training Parameters | epoch=120, steps=195, batch_size=32, lr=0.01 | | |||
| | Optimizer | Momentum | | |||
| | Loss Function | Softmax Cross Entropy | | |||
| | outputs | probability | | |||
| | Loss | 0.0496 | | |||
| | Speed | 1pc: 16.7 ms/step; 8pcs: 17.0 ms/step | | |||
| | Total time | 1pc: 55.5 mins; 8pcs: 15.0 mins | | |||
| | Parameters (M) | 4.8 | | |||
| | Checkpoint for Fine tuning | 6.4M (.ckpt file) | | |||
| | Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) | | |||
| #### SqueezeNet on ImageNet | |||
| | Parameters | Ascend | | |||
| | -------------------------- | ----------------------------------------------------------- | | |||
| | Model Version | SqueezeNet | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | | |||
| | uploaded Date | 11/06/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | ImageNet | | |||
| | Training Parameters | epoch=200, steps=5004, batch_size=32, lr=0.01 | | |||
| | Optimizer | Momentum | | |||
| | Loss Function | Softmax Cross Entropy | | |||
| | outputs | probability | | |||
| | Loss | 2.9150 | | |||
| | Speed | 8pcs: 19.9 ms/step | | |||
| | Total time | 8pcs: 5.2 hours | | |||
| | Parameters (M) | 4.8 | | |||
| | Checkpoint for Fine tuning | 13.3M (.ckpt file) | | |||
| | Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) | | |||
| #### SqueezeNet_Residual on CIFAR-10 | |||
| | Parameters | Ascend | | |||
| | -------------------------- | ----------------------------------------------------------- | | |||
| | Model Version | SqueezeNet_Residual | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | | |||
| | uploaded Date | 11/06/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | CIFAR-10 | | |||
| | Training Parameters | epoch=150, steps=195, batch_size=32, lr=0.01 | | |||
| | Optimizer | Momentum | | |||
| | Loss Function | Softmax Cross Entropy | | |||
| | outputs | probability | | |||
| | Loss | 0.0641 | | |||
| | Speed | 1pc: 16.9 ms/step; 8pcs: 17.3 ms/step | | |||
| | Total time | 1pc: 68.6 mins; 8pcs: 20.9 mins | | |||
| | Parameters (M) | 4.8 | | |||
| | Checkpoint for Fine tuning | 6.5M (.ckpt file) | | |||
| | Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) | | |||
| #### SqueezeNet_Residual on ImageNet | |||
| | Parameters | Ascend | | |||
| | -------------------------- | ----------------------------------------------------------- | | |||
| | Model Version | SqueezeNet_Residual | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | | |||
| | uploaded Date | 11/06/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | ImageNet | | |||
| | Training Parameters | epoch=300, steps=5004, batch_size=32, lr=0.01 | | |||
| | Optimizer | Momentum | | |||
| | Loss Function | Softmax Cross Entropy | | |||
| | outputs | probability | | |||
| | Loss | 2.9040 | | |||
| | Speed | 8pcs: 20.2 ms/step | | |||
| | Total time | 8pcs: 8.0 hours | | |||
| | Parameters (M) | 4.8 | | |||
| | Checkpoint for Fine tuning | 15.3M (.ckpt file) | | |||
| | Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) | | |||
| ### Inference Performance | |||
| #### SqueezeNet on CIFAR-10 | |||
| | Parameters | Ascend | | |||
| | ------------------- | --------------------------- | | |||
| | Model Version | SqueezeNet | | |||
| | Resource | Ascend 910 | | |||
| | Uploaded Date | 11/06/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | CIFAR-10 | | |||
| | batch_size | 32 | | |||
| | outputs | probability | | |||
| | Accuracy | 1pc: 89.0%; 8pcs: 84.4% | | |||
| #### SqueezeNet on ImageNet | |||
| | Parameters | Ascend | | |||
| | ------------------- | --------------------------- | | |||
| | Model Version | SqueezeNet | | |||
| | Resource | Ascend 910 | | |||
| | Uploaded Date | 11/06/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | ImageNet | | |||
| | batch_size | 32 | | |||
| | outputs | probability | | |||
| | Accuracy | 8pcs: 58.5%(TOP1), 81.1%(TOP5) | | |||
| #### SqueezeNet_Residual on CIFAR-10 | |||
| | Parameters | Ascend | | |||
| | ------------------- | --------------------------- | | |||
| | Model Version | SqueezeNet_Residual | | |||
| | Resource | Ascend 910 | | |||
| | Uploaded Date | 11/06/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | CIFAR-10 | | |||
| | batch_size | 32 | | |||
| | outputs | probability | | |||
| | Accuracy | 1pc: 90.8%; 8pcs: 87.4% | | |||
| #### SqueezeNet_Residual on ImageNet | |||
| | Parameters | Ascend | | |||
| | ------------------- | --------------------------- | | |||
| | Model Version | SqueezeNet_Residual | | |||
| | Resource | Ascend 910 | | |||
| | Uploaded Date | 11/06/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | ImageNet | | |||
| | batch_size | 32 | | |||
| | outputs | probability | | |||
| | Accuracy | 8pcs: 60.9%(TOP1), 82.6%(TOP5) | | |||
| ## [How to use](#contents) | |||
| ### Inference | |||
| If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example: | |||
| - Running on Ascend | |||
| ``` | |||
| # Set context | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target='Ascend', | |||
| device_id=device_id) | |||
| # Load unseen dataset for inference | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||
| do_train=False, | |||
| batch_size=config.batch_size, | |||
| target='Ascend') | |||
| # Define model | |||
| net = squeezenet(num_classes=config.class_num) | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||
| model = Model(net, | |||
| loss_fn=loss, | |||
| metrics={'top_1_accuracy', 'top_5_accuracy'}) | |||
| # Load pre-trained model | |||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||
| load_param_into_net(net, param_dict) | |||
| net.set_train(False) | |||
| # Make predictions on the unseen dataset | |||
| acc = model.eval(dataset) | |||
| print("accuracy: ", acc) | |||
| ``` | |||
| - Running on GPU: | |||
| ``` | |||
| # Set context | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target='GPU', | |||
| device_id=device_id) | |||
| # Load unseen dataset for inference | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||
| do_train=False, | |||
| batch_size=config.batch_size, | |||
| target='GPU') | |||
| # Define model | |||
| net = squeezenet(num_classes=config.class_num) | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||
| model = Model(net, | |||
| loss_fn=loss, | |||
| metrics={'top_1_accuracy', 'top_5_accuracy'}) | |||
| # Load pre-trained model | |||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||
| load_param_into_net(net, param_dict) | |||
| net.set_train(False) | |||
| # Make predictions on the unseen dataset | |||
| acc = model.eval(dataset) | |||
| print("accuracy: ", acc) | |||
| ``` | |||
| ### Continue Training on the Pretrained Model | |||
| - running on Ascend | |||
| ``` | |||
| # Load dataset | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||
| do_train=True, | |||
| repeat_num=1, | |||
| batch_size=config.batch_size, | |||
| target='Ascend') | |||
| step_size = dataset.get_dataset_size() | |||
| # define net | |||
| net = squeezenet(num_classes=config.class_num) | |||
| # load checkpoint | |||
| if args_opt.pre_trained: | |||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||
| load_param_into_net(net, param_dict) | |||
| # init lr | |||
| lr = get_lr(lr_init=config.lr_init, | |||
| lr_end=config.lr_end, | |||
| lr_max=config.lr_max, | |||
| total_epochs=config.epoch_size, | |||
| warmup_epochs=config.warmup_epochs, | |||
| pretrain_epochs=config.pretrain_epoch_size, | |||
| steps_per_epoch=step_size, | |||
| lr_decay_mode=config.lr_decay_mode) | |||
| lr = Tensor(lr) | |||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||
| loss_scale = FixedLossScaleManager(config.loss_scale, | |||
| drop_overflow_update=False) | |||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), | |||
| lr, | |||
| config.momentum, | |||
| config.weight_decay, | |||
| config.loss_scale, | |||
| use_nesterov=True) | |||
| model = Model(net, | |||
| loss_fn=loss, | |||
| optimizer=opt, | |||
| loss_scale_manager=loss_scale, | |||
| metrics={'acc'}, | |||
| amp_level="O2", | |||
| keep_batchnorm_fp32=False) | |||
| # Set callbacks | |||
| config_ck = CheckpointConfig( | |||
| save_checkpoint_steps=config.save_checkpoint_epochs * step_size, | |||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||
| time_cb = TimeMonitor(data_size=step_size) | |||
| ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset, | |||
| directory=ckpt_save_dir, | |||
| config=config_ck) | |||
| loss_cb = LossMonitor() | |||
| # Start training | |||
| model.train(config.epoch_size - config.pretrain_epoch_size, dataset, | |||
| callbacks=[time_cb, ckpt_cb, loss_cb]) | |||
| print("train success") | |||
| ``` | |||
| - running on GPU | |||
| ``` | |||
| # Load dataset | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||
| do_train=True, | |||
| repeat_num=1, | |||
| batch_size=config.batch_size, | |||
| target='Ascend') | |||
| step_size = dataset.get_dataset_size() | |||
| # define net | |||
| net = squeezenet(num_classes=config.class_num) | |||
| # load checkpoint | |||
| if args_opt.pre_trained: | |||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||
| load_param_into_net(net, param_dict) | |||
| # init lr | |||
| lr = get_lr(lr_init=config.lr_init, | |||
| lr_end=config.lr_end, | |||
| lr_max=config.lr_max, | |||
| total_epochs=config.epoch_size, | |||
| warmup_epochs=config.warmup_epochs, | |||
| pretrain_epochs=config.pretrain_epoch_size, | |||
| steps_per_epoch=step_size, | |||
| lr_decay_mode=config.lr_decay_mode) | |||
| lr = Tensor(lr) | |||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), | |||
| lr, | |||
| config.momentum, | |||
| config.weight_decay, | |||
| use_nesterov=True) | |||
| model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) | |||
| # Set callbacks | |||
| config_ck = CheckpointConfig( | |||
| save_checkpoint_steps=config.save_checkpoint_epochs * step_size, | |||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||
| time_cb = TimeMonitor(data_size=step_size) | |||
| ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset, | |||
| directory=ckpt_save_dir, | |||
| config=config_ck) | |||
| loss_cb = LossMonitor() | |||
| # Start training | |||
| model.train(config.epoch_size - config.pretrain_epoch_size, dataset, | |||
| callbacks=[time_cb, ckpt_cb, loss_cb]) | |||
| print("train success") | |||
| ``` | |||
| ### Transfer Learning | |||
| To be added. | |||
| # [Description of Random Situation](#contents) | |||
| In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py. | |||
| # [ModelZoo Homepage](#contents) | |||
| Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | |||
| @@ -0,0 +1,95 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """eval squeezenet.""" | |||
| import os | |||
| import argparse | |||
| from mindspore import context | |||
| from mindspore.common import set_seed | |||
| from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from src.CrossEntropySmooth import CrossEntropySmooth | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], | |||
| help='Model.') | |||
| parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') | |||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||
| args_opt = parser.parse_args() | |||
| set_seed(1) | |||
| if args_opt.net == "squeezenet": | |||
| from src.squeezenet import SqueezeNet as squeezenet | |||
| if args_opt.dataset == "cifar10": | |||
| from src.config import config1 as config | |||
| from src.dataset import create_dataset_cifar as create_dataset | |||
| else: | |||
| from src.config import config2 as config | |||
| from src.dataset import create_dataset_imagenet as create_dataset | |||
| else: | |||
| from src.squeezenet import SqueezeNet_Residual as squeezenet | |||
| if args_opt.dataset == "cifar10": | |||
| from src.config import config3 as config | |||
| from src.dataset import create_dataset_cifar as create_dataset | |||
| else: | |||
| from src.config import config4 as config | |||
| from src.dataset import create_dataset_imagenet as create_dataset | |||
| if __name__ == '__main__': | |||
| target = args_opt.device_target | |||
| # init context | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target=target, | |||
| device_id=device_id) | |||
| # create dataset | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||
| do_train=False, | |||
| batch_size=config.batch_size, | |||
| target=target) | |||
| step_size = dataset.get_dataset_size() | |||
| # define net | |||
| net = squeezenet(num_classes=config.class_num) | |||
| # load checkpoint | |||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||
| load_param_into_net(net, param_dict) | |||
| net.set_train(False) | |||
| # define loss | |||
| if args_opt.dataset == "imagenet": | |||
| if not config.use_label_smooth: | |||
| config.label_smooth_factor = 0.0 | |||
| loss = CrossEntropySmooth(sparse=True, | |||
| reduction='mean', | |||
| smooth_factor=config.label_smooth_factor, | |||
| num_classes=config.class_num) | |||
| else: | |||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||
| # define model | |||
| model = Model(net, | |||
| loss_fn=loss, | |||
| metrics={'top_1_accuracy', 'top_5_accuracy'}) | |||
| # eval model | |||
| res = model.eval(dataset) | |||
| print("result:", res, "ckpt=", args_opt.checkpoint_path) | |||
| @@ -0,0 +1,54 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| ##############export checkpoint file into air and onnx models################# | |||
| python export.py --net squeezenet --dataset cifar10 --checkpoint_path squeezenet_cifar10-120_1562.ckpt | |||
| """ | |||
| import argparse | |||
| import numpy as np | |||
| from mindspore import Tensor | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net, export | |||
| if __name__ == '__main__': | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], | |||
| help='Model.') | |||
| parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') | |||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||
| args_opt = parser.parse_args() | |||
| if args_opt.net == "squeezenet": | |||
| from src.squeezenet import SqueezeNet as squeezenet | |||
| else: | |||
| from src.squeezenet import SqueezeNet_Residual as squeezenet | |||
| if args_opt.dataset == "cifar10": | |||
| num_classes = 10 | |||
| else: | |||
| num_classes = 1000 | |||
| onnx_filename = args_opt.net + '_' + args_opt.dataset + '.onnx' | |||
| air_filename = args_opt.net + '_' + args_opt.dataset + '.air' | |||
| net = squeezenet(num_classes=num_classes) | |||
| assert args_opt.checkpoint_path is not None, "checkpoint_path is None." | |||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||
| load_param_into_net(net, param_dict) | |||
| input_arr = Tensor(np.zeros([1, 3, 227, 227], np.float32)) | |||
| export(net, input_arr, file_name=onnx_filename, file_format="ONNX") | |||
| export(net, input_arr, file_name=air_filename, file_format="AIR") | |||
| @@ -0,0 +1,99 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 4 ] && [ $# != 5 ] | |||
| then | |||
| echo "Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)" | |||
| exit 1 | |||
| fi | |||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||
| then | |||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||
| exit 1 | |||
| fi | |||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||
| then | |||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| PATH1=$(get_real_path $3) | |||
| PATH2=$(get_real_path $4) | |||
| if [ $# == 5 ] | |||
| then | |||
| PATH3=$(get_real_path $5) | |||
| fi | |||
| if [ ! -f $PATH1 ] | |||
| then | |||
| echo "error: RANK_TABLE_FILE=$PATH1 is not a file" | |||
| exit 1 | |||
| fi | |||
| if [ ! -d $PATH2 ] | |||
| then | |||
| echo "error: DATASET_PATH=$PATH2 is not a directory" | |||
| exit 1 | |||
| fi | |||
| if [ $# == 5 ] && [ ! -f $PATH3 ] | |||
| then | |||
| echo "error: PRETRAINED_CKPT_PATH=$PATH3 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=8 | |||
| export RANK_SIZE=8 | |||
| export RANK_TABLE_FILE=$PATH1 | |||
| export SERVER_ID=0 | |||
| rank_start=$((DEVICE_NUM * SERVER_ID)) | |||
| for((i=0; i<${DEVICE_NUM}; i++)) | |||
| do | |||
| export DEVICE_ID=${i} | |||
| export RANK_ID=$((rank_start + i)) | |||
| rm -rf ./train_parallel$i | |||
| mkdir ./train_parallel$i | |||
| cp ./train.py ./train_parallel$i | |||
| cp -r ./src ./train_parallel$i | |||
| cd ./train_parallel$i || exit | |||
| echo "start training for rank $RANK_ID, device $DEVICE_ID" | |||
| env > env.log | |||
| if [ $# == 4 ] | |||
| then | |||
| python train.py --net=$1 --dataset=$2 --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log & | |||
| fi | |||
| if [ $# == 5 ] | |||
| then | |||
| python train.py --net=$1 --dataset=$2 --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 --pre_trained=$PATH3 &> log & | |||
| fi | |||
| cd .. | |||
| done | |||
| @@ -0,0 +1,85 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 3 ] && [ $# != 4 ] | |||
| then | |||
| echo "Usage: sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)" | |||
| exit 1 | |||
| fi | |||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||
| then | |||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||
| exit 1 | |||
| fi | |||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||
| then | |||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| PATH1=$(get_real_path $3) | |||
| if [ $# == 4 ] | |||
| then | |||
| PATH2=$(get_real_path $4) | |||
| fi | |||
| if [ ! -d $PATH1 ] | |||
| then | |||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||
| exit 1 | |||
| fi | |||
| if [ $# == 5 ] && [ ! -f $PATH2 ] | |||
| then | |||
| echo "error: PRETRAINED_CKPT_PATH=$PATH2 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=8 | |||
| export RANK_SIZE=8 | |||
| rm -rf ./train_parallel | |||
| mkdir ./train_parallel | |||
| cp ./train.py ./train_parallel | |||
| cp -r ./src ./train_parallel | |||
| cd ./train_parallel || exit | |||
| if [ $# == 3 ] | |||
| then | |||
| mpirun --allow-run-as-root -n $RANK_SIZE --output-filename log_output --merge-stderr-to-stdout \ | |||
| python train.py --net=$1 --dataset=$2 --run_distribute=True \ | |||
| --device_num=$DEVICE_NUM --device_target="GPU" --dataset_path=$PATH1 &> log & | |||
| fi | |||
| if [ $# == 4 ] | |||
| then | |||
| mpirun --allow-run-as-root -n $RANK_SIZE --output-filename log_output --merge-stderr-to-stdout \ | |||
| python train.py --net=$1 --dataset=$2 --run_distribute=True \ | |||
| --device_num=$DEVICE_NUM --device_target="GPU" --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & | |||
| fi | |||
| @@ -0,0 +1,76 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 5 ] | |||
| then | |||
| echo "Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]" | |||
| exit 1 | |||
| fi | |||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||
| then | |||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||
| exit 1 | |||
| fi | |||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||
| then | |||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| PATH1=$(get_real_path $4) | |||
| PATH2=$(get_real_path $5) | |||
| if [ ! -d $PATH1 ] | |||
| then | |||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||
| exit 1 | |||
| fi | |||
| if [ ! -f $PATH2 ] | |||
| then | |||
| echo "error: CHECKPOINT_PATH=$PATH2 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=1 | |||
| export DEVICE_ID=$3 | |||
| export RANK_SIZE=$DEVICE_NUM | |||
| export RANK_ID=0 | |||
| if [ -d "eval" ]; | |||
| then | |||
| rm -rf ./eval | |||
| fi | |||
| mkdir ./eval | |||
| cp ./eval.py ./eval | |||
| cp -r ./src ./eval | |||
| cd ./eval || exit | |||
| env > env.log | |||
| echo "start evaluation for device $DEVICE_ID" | |||
| python eval.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --checkpoint_path=$PATH2 &> log & | |||
| cd .. | |||
| @@ -0,0 +1,76 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 5 ] | |||
| then | |||
| echo "Usage: sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]" | |||
| exit 1 | |||
| fi | |||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||
| then | |||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||
| exit 1 | |||
| fi | |||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||
| then | |||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| PATH1=$(get_real_path $4) | |||
| PATH2=$(get_real_path $5) | |||
| if [ ! -d $PATH1 ] | |||
| then | |||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||
| exit 1 | |||
| fi | |||
| if [ ! -f $PATH2 ] | |||
| then | |||
| echo "error: CHECKPOINT_PATH=$PATH2 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=1 | |||
| export DEVICE_ID=$3 | |||
| export RANK_SIZE=$DEVICE_NUM | |||
| export RANK_ID=0 | |||
| if [ -d "eval" ]; | |||
| then | |||
| rm -rf ./eval | |||
| fi | |||
| mkdir ./eval | |||
| cp ./eval.py ./eval | |||
| cp -r ./src ./eval | |||
| cd ./eval || exit | |||
| env > env.log | |||
| echo "start evaluation for device $DEVICE_ID" | |||
| python eval.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --checkpoint_path=$PATH2 --device_target="GPU" &> log & | |||
| cd .. | |||
| @@ -0,0 +1,87 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 4 ] && [ $# != 5 ] | |||
| then | |||
| echo "Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)" | |||
| exit 1 | |||
| fi | |||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||
| then | |||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||
| exit 1 | |||
| fi | |||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||
| then | |||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| PATH1=$(get_real_path $4) | |||
| if [ $# == 5 ] | |||
| then | |||
| PATH2=$(get_real_path $5) | |||
| fi | |||
| if [ ! -d $PATH1 ] | |||
| then | |||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||
| exit 1 | |||
| fi | |||
| if [ $# == 5 ] && [ ! -f $PATH2 ] | |||
| then | |||
| echo "error: PRETRAINED_CKPT_PATH=$PATH2 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=1 | |||
| export DEVICE_ID=$3 | |||
| export RANK_ID=0 | |||
| export RANK_SIZE=1 | |||
| if [ -d "train" ]; | |||
| then | |||
| rm -rf ./train | |||
| fi | |||
| mkdir ./train | |||
| cp ./train.py ./train | |||
| cp -r ./src ./train | |||
| cd ./train || exit | |||
| echo "start training for device $DEVICE_ID" | |||
| env > env.log | |||
| if [ $# == 4 ] | |||
| then | |||
| python train.py --net=$1 --dataset=$2 --dataset_path=$PATH1 &> log & | |||
| fi | |||
| if [ $# == 5 ] | |||
| then | |||
| python train.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & | |||
| fi | |||
| cd .. | |||
| @@ -0,0 +1,87 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 4 ] && [ $# != 5 ] | |||
| then | |||
| echo "Usage: sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)" | |||
| exit 1 | |||
| fi | |||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||
| then | |||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||
| exit 1 | |||
| fi | |||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||
| then | |||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| PATH1=$(get_real_path $4) | |||
| if [ $# == 5 ] | |||
| then | |||
| PATH2=$(get_real_path $5) | |||
| fi | |||
| if [ ! -d $PATH1 ] | |||
| then | |||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||
| exit 1 | |||
| fi | |||
| if [ $# == 5 ] && [ ! -f $PATH2 ] | |||
| then | |||
| echo "error: PRETRAINED_CKPT_PATH=$PATH2 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=1 | |||
| export DEVICE_ID=$3 | |||
| export RANK_ID=0 | |||
| export RANK_SIZE=1 | |||
| if [ -d "train" ]; | |||
| then | |||
| rm -rf ./train | |||
| fi | |||
| mkdir ./train | |||
| cp ./train.py ./train | |||
| cp -r ./src ./train | |||
| cd ./train || exit | |||
| echo "start training for device $DEVICE_ID" | |||
| env > env.log | |||
| if [ $# == 4 ] | |||
| then | |||
| python train.py --net=$1 --dataset=$2 --device_target="GPU" --dataset_path=$PATH1 &> log & | |||
| fi | |||
| if [ $# == 5 ] | |||
| then | |||
| python train.py --net=$1 --dataset=$2 --device_target="GPU" --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & | |||
| fi | |||
| cd .. | |||
| @@ -0,0 +1,38 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """define loss function for network""" | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.nn.loss.loss import _Loss | |||
| from mindspore.ops import functional as F | |||
| from mindspore.ops import operations as P | |||
| class CrossEntropySmooth(_Loss): | |||
| """CrossEntropy""" | |||
| def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000): | |||
| super(CrossEntropySmooth, self).__init__() | |||
| self.onehot = P.OneHot() | |||
| self.sparse = sparse | |||
| self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) | |||
| self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) | |||
| self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction) | |||
| def construct(self, logit, label): | |||
| if self.sparse: | |||
| label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) | |||
| loss = self.ce(logit, label) | |||
| return loss | |||
| @@ -0,0 +1,102 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| network config setting, will be used in train.py and eval.py | |||
| """ | |||
| from easydict import EasyDict as ed | |||
| # config for squeezenet, cifar10 | |||
| config1 = ed({ | |||
| "class_num": 10, | |||
| "batch_size": 32, | |||
| "loss_scale": 1024, | |||
| "momentum": 0.9, | |||
| "weight_decay": 1e-4, | |||
| "epoch_size": 120, | |||
| "pretrain_epoch_size": 0, | |||
| "save_checkpoint": True, | |||
| "save_checkpoint_epochs": 1, | |||
| "keep_checkpoint_max": 10, | |||
| "save_checkpoint_path": "./", | |||
| "warmup_epochs": 5, | |||
| "lr_decay_mode": "poly", | |||
| "lr_init": 0, | |||
| "lr_end": 0, | |||
| "lr_max": 0.01 | |||
| }) | |||
| # config for squeezenet, imagenet | |||
| config2 = ed({ | |||
| "class_num": 1000, | |||
| "batch_size": 32, | |||
| "loss_scale": 1024, | |||
| "momentum": 0.9, | |||
| "weight_decay": 7e-5, | |||
| "epoch_size": 200, | |||
| "pretrain_epoch_size": 0, | |||
| "save_checkpoint": True, | |||
| "save_checkpoint_epochs": 1, | |||
| "keep_checkpoint_max": 10, | |||
| "save_checkpoint_path": "./", | |||
| "warmup_epochs": 0, | |||
| "lr_decay_mode": "poly", | |||
| "use_label_smooth": True, | |||
| "label_smooth_factor": 0.1, | |||
| "lr_init": 0, | |||
| "lr_end": 0, | |||
| "lr_max": 0.01 | |||
| }) | |||
| # config for squeezenet_residual, cifar10 | |||
| config3 = ed({ | |||
| "class_num": 10, | |||
| "batch_size": 32, | |||
| "loss_scale": 1024, | |||
| "momentum": 0.9, | |||
| "weight_decay": 1e-4, | |||
| "epoch_size": 150, | |||
| "pretrain_epoch_size": 0, | |||
| "save_checkpoint": True, | |||
| "save_checkpoint_epochs": 1, | |||
| "keep_checkpoint_max": 10, | |||
| "save_checkpoint_path": "./", | |||
| "warmup_epochs": 5, | |||
| "lr_decay_mode": "linear", | |||
| "lr_init": 0, | |||
| "lr_end": 0, | |||
| "lr_max": 0.01 | |||
| }) | |||
| # config for squeezenet_residual, imagenet | |||
| config4 = ed({ | |||
| "class_num": 1000, | |||
| "batch_size": 32, | |||
| "loss_scale": 1024, | |||
| "momentum": 0.9, | |||
| "weight_decay": 7e-5, | |||
| "epoch_size": 300, | |||
| "pretrain_epoch_size": 0, | |||
| "save_checkpoint": True, | |||
| "save_checkpoint_epochs": 1, | |||
| "keep_checkpoint_max": 10, | |||
| "save_checkpoint_path": "./", | |||
| "warmup_epochs": 0, | |||
| "lr_decay_mode": "cosine", | |||
| "use_label_smooth": True, | |||
| "label_smooth_factor": 0.1, | |||
| "lr_init": 0, | |||
| "lr_end": 0, | |||
| "lr_max": 0.01 | |||
| }) | |||
| @@ -0,0 +1,191 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| create train or eval dataset. | |||
| """ | |||
| import os | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.dataset.engine as de | |||
| import mindspore.dataset.vision.c_transforms as C | |||
| import mindspore.dataset.transforms.c_transforms as C2 | |||
| from mindspore.communication.management import init, get_rank, get_group_size | |||
| def create_dataset_cifar(dataset_path, | |||
| do_train, | |||
| repeat_num=1, | |||
| batch_size=32, | |||
| target="Ascend"): | |||
| """ | |||
| create a train or evaluate cifar10 dataset | |||
| Args: | |||
| dataset_path(string): the path of dataset. | |||
| do_train(bool): whether dataset is used for train or eval. | |||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||
| batch_size(int): the batch size of dataset. Default: 32 | |||
| target(str): the device target. Default: Ascend | |||
| Returns: | |||
| dataset | |||
| """ | |||
| if target == "Ascend": | |||
| device_num, rank_id = _get_rank_info() | |||
| else: | |||
| init() | |||
| rank_id = get_rank() | |||
| device_num = get_group_size() | |||
| if device_num == 1: | |||
| ds = de.Cifar10Dataset(dataset_path, | |||
| num_parallel_workers=8, | |||
| shuffle=True) | |||
| else: | |||
| ds = de.Cifar10Dataset(dataset_path, | |||
| num_parallel_workers=8, | |||
| shuffle=True, | |||
| num_shards=device_num, | |||
| shard_id=rank_id) | |||
| # define map operations | |||
| if do_train: | |||
| trans = [ | |||
| C.RandomCrop((32, 32), (4, 4, 4, 4)), | |||
| C.RandomHorizontalFlip(prob=0.5), | |||
| C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4), | |||
| C.Resize((227, 227)), | |||
| C.Rescale(1.0 / 255.0, 0.0), | |||
| C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), | |||
| C.CutOut(112), | |||
| C.HWC2CHW() | |||
| ] | |||
| else: | |||
| trans = [ | |||
| C.Resize((227, 227)), | |||
| C.Rescale(1.0 / 255.0, 0.0), | |||
| C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), | |||
| C.HWC2CHW() | |||
| ] | |||
| type_cast_op = C2.TypeCast(mstype.int32) | |||
| ds = ds.map(operations=type_cast_op, | |||
| input_columns="label", | |||
| num_parallel_workers=8) | |||
| ds = ds.map(operations=trans, | |||
| input_columns="image", | |||
| num_parallel_workers=8) | |||
| # apply batch operations | |||
| ds = ds.batch(batch_size, drop_remainder=True) | |||
| # apply dataset repeat operation | |||
| ds = ds.repeat(repeat_num) | |||
| return ds | |||
| def create_dataset_imagenet(dataset_path, | |||
| do_train, | |||
| repeat_num=1, | |||
| batch_size=32, | |||
| target="Ascend"): | |||
| """ | |||
| create a train or eval imagenet dataset | |||
| Args: | |||
| dataset_path(string): the path of dataset. | |||
| do_train(bool): whether dataset is used for train or eval. | |||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||
| batch_size(int): the batch size of dataset. Default: 32 | |||
| target(str): the device target. Default: Ascend | |||
| Returns: | |||
| dataset | |||
| """ | |||
| if target == "Ascend": | |||
| device_num, rank_id = _get_rank_info() | |||
| else: | |||
| init() | |||
| rank_id = get_rank() | |||
| device_num = get_group_size() | |||
| if device_num == 1: | |||
| ds = de.ImageFolderDataset(dataset_path, | |||
| num_parallel_workers=8, | |||
| shuffle=True) | |||
| else: | |||
| ds = de.ImageFolderDataset(dataset_path, | |||
| num_parallel_workers=8, | |||
| shuffle=True, | |||
| num_shards=device_num, | |||
| shard_id=rank_id) | |||
| image_size = 227 | |||
| mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] | |||
| std = [0.229 * 255, 0.224 * 255, 0.225 * 255] | |||
| # define map operations | |||
| if do_train: | |||
| trans = [ | |||
| C.RandomCropDecodeResize(image_size, | |||
| scale=(0.08, 1.0), | |||
| ratio=(0.75, 1.333)), | |||
| C.RandomHorizontalFlip(prob=0.5), | |||
| C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4), | |||
| C.Normalize(mean=mean, std=std), | |||
| C.CutOut(112), | |||
| C.HWC2CHW() | |||
| ] | |||
| else: | |||
| trans = [ | |||
| C.Decode(), | |||
| C.Resize((256, 256)), | |||
| C.CenterCrop(image_size), | |||
| C.Normalize(mean=mean, std=std), | |||
| C.HWC2CHW() | |||
| ] | |||
| type_cast_op = C2.TypeCast(mstype.int32) | |||
| ds = ds.map(operations=type_cast_op, | |||
| input_columns="label", | |||
| num_parallel_workers=8) | |||
| ds = ds.map(operations=trans, | |||
| input_columns="image", | |||
| num_parallel_workers=8) | |||
| # apply batch operations | |||
| ds = ds.batch(batch_size, drop_remainder=True) | |||
| # apply dataset repeat operation | |||
| ds = ds.repeat(repeat_num) | |||
| return ds | |||
| def _get_rank_info(): | |||
| """ | |||
| get rank size and rank id | |||
| """ | |||
| rank_size = int(os.environ.get("RANK_SIZE", 1)) | |||
| if rank_size > 1: | |||
| rank_size = get_group_size() | |||
| rank_id = get_rank() | |||
| else: | |||
| rank_size = 1 | |||
| rank_id = 0 | |||
| return rank_size, rank_id | |||
| @@ -0,0 +1,106 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """learning rate generator""" | |||
| import math | |||
| import numpy as np | |||
| def get_lr(lr_init, lr_end, lr_max, total_epochs, warmup_epochs, | |||
| pretrain_epochs, steps_per_epoch, lr_decay_mode): | |||
| """ | |||
| generate learning rate array | |||
| Args: | |||
| lr_init(float): init learning rate | |||
| lr_end(float): end learning rate | |||
| lr_max(float): max learning rate | |||
| total_epochs(int): total epoch of training | |||
| warmup_epochs(int): number of warmup epochs | |||
| pretrain_epochs(int): number of pretrain epochs | |||
| steps_per_epoch(int): steps of one epoch | |||
| lr_decay_mode(string): learning rate decay mode, | |||
| including steps, poly, linear or cosine | |||
| Returns: | |||
| np.array, learning rate array | |||
| """ | |||
| lr_each_step = [] | |||
| total_steps = steps_per_epoch * total_epochs | |||
| warmup_steps = steps_per_epoch * warmup_epochs | |||
| pretrain_steps = steps_per_epoch * pretrain_epochs | |||
| decay_steps = total_steps - warmup_steps | |||
| if lr_decay_mode == 'steps': | |||
| decay_epoch_index = [ | |||
| 0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps | |||
| ] | |||
| for i in range(total_steps): | |||
| if i < decay_epoch_index[0]: | |||
| lr = lr_max | |||
| elif i < decay_epoch_index[1]: | |||
| lr = lr_max * 0.1 | |||
| elif i < decay_epoch_index[2]: | |||
| lr = lr_max * 0.01 | |||
| else: | |||
| lr = lr_max * 0.001 | |||
| lr_each_step.append(lr) | |||
| elif lr_decay_mode == 'poly': | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr = linear_warmup_lr(i, warmup_steps, lr_max, lr_init) | |||
| else: | |||
| base = (1.0 - (i - warmup_steps) / decay_steps) | |||
| lr = lr_max * base * base | |||
| lr_each_step.append(lr) | |||
| elif lr_decay_mode == 'linear': | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr = linear_warmup_lr(i, warmup_steps, lr_max, lr_init) | |||
| else: | |||
| lr = lr_max - (lr_max - lr_end) * (i - | |||
| warmup_steps) / decay_steps | |||
| lr_each_step.append(lr) | |||
| elif lr_decay_mode == 'cosine': | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr = linear_warmup_lr(i, warmup_steps, lr_max, lr_init) | |||
| else: | |||
| linear_decay = (total_steps - i) / decay_steps | |||
| cosine_decay = 0.5 * ( | |||
| 1 + math.cos(math.pi * 2 * 0.47 * | |||
| (i - warmup_steps) / decay_steps)) | |||
| decayed = linear_decay * cosine_decay + 0.00001 | |||
| lr = lr_max * decayed | |||
| lr_each_step.append(lr) | |||
| else: | |||
| raise NotImplementedError( | |||
| 'Learning rate decay mode [{:s}] cannot be recognized'.format( | |||
| lr_decay_mode)) | |||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||
| learning_rate = lr_each_step[pretrain_steps:] | |||
| return learning_rate | |||
| def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr): | |||
| lr_inc = (base_lr - init_lr) / warmup_steps | |||
| lr = init_lr + lr_inc * current_step | |||
| return lr | |||
| @@ -0,0 +1,216 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Squeezenet.""" | |||
| import mindspore.nn as nn | |||
| from mindspore.common import initializer as weight_init | |||
| from mindspore.ops import operations as P | |||
| class Fire(nn.Cell): | |||
| def __init__(self, inplanes, squeeze_planes, expand1x1_planes, | |||
| expand3x3_planes): | |||
| super(Fire, self).__init__() | |||
| self.inplanes = inplanes | |||
| self.squeeze = nn.Conv2d(inplanes, | |||
| squeeze_planes, | |||
| kernel_size=1, | |||
| has_bias=True) | |||
| self.squeeze_activation = nn.ReLU() | |||
| self.expand1x1 = nn.Conv2d(squeeze_planes, | |||
| expand1x1_planes, | |||
| kernel_size=1, | |||
| has_bias=True) | |||
| self.expand1x1_activation = nn.ReLU() | |||
| self.expand3x3 = nn.Conv2d(squeeze_planes, | |||
| expand3x3_planes, | |||
| kernel_size=3, | |||
| pad_mode='same', | |||
| has_bias=True) | |||
| self.expand3x3_activation = nn.ReLU() | |||
| self.concat = P.Concat(axis=1) | |||
| def construct(self, x): | |||
| x = self.squeeze_activation(self.squeeze(x)) | |||
| return self.concat((self.expand1x1_activation(self.expand1x1(x)), | |||
| self.expand3x3_activation(self.expand3x3(x)))) | |||
| class SqueezeNet(nn.Cell): | |||
| r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level | |||
| accuracy with 50x fewer parameters and <0.5MB model size" | |||
| <https://arxiv.org/abs/1602.07360>`_ paper. | |||
| Get SqueezeNet neural network. | |||
| Args: | |||
| num_classes (int): Class number. | |||
| Returns: | |||
| Cell, cell instance of SqueezeNet neural network. | |||
| Examples: | |||
| >>> net = SqueezeNet(10) | |||
| """ | |||
| def __init__(self, num_classes=10): | |||
| super(SqueezeNet, self).__init__() | |||
| self.features = nn.SequentialCell([ | |||
| nn.Conv2d(3, | |||
| 96, | |||
| kernel_size=7, | |||
| stride=2, | |||
| pad_mode='valid', | |||
| has_bias=True), | |||
| nn.ReLU(), | |||
| nn.MaxPool2d(kernel_size=3, stride=2), | |||
| Fire(96, 16, 64, 64), | |||
| Fire(128, 16, 64, 64), | |||
| Fire(128, 32, 128, 128), | |||
| nn.MaxPool2d(kernel_size=3, stride=2), | |||
| Fire(256, 32, 128, 128), | |||
| Fire(256, 48, 192, 192), | |||
| Fire(384, 48, 192, 192), | |||
| Fire(384, 64, 256, 256), | |||
| nn.MaxPool2d(kernel_size=3, stride=2), | |||
| Fire(512, 64, 256, 256), | |||
| ]) | |||
| # Final convolution is initialized differently from the rest | |||
| self.final_conv = nn.Conv2d(512, | |||
| num_classes, | |||
| kernel_size=1, | |||
| has_bias=True) | |||
| self.dropout = nn.Dropout(keep_prob=0.5) | |||
| self.relu = nn.ReLU() | |||
| self.mean = P.ReduceMean(keep_dims=True) | |||
| self.flatten = nn.Flatten() | |||
| self.custom_init_weight() | |||
| def custom_init_weight(self): | |||
| """ | |||
| Init the weight of Conv2d in the net. | |||
| """ | |||
| for _, cell in self.cells_and_names(): | |||
| if isinstance(cell, nn.Conv2d): | |||
| if cell is self.final_conv: | |||
| cell.weight.set_data( | |||
| weight_init.initializer('normal', cell.weight.shape, | |||
| cell.weight.dtype)) | |||
| else: | |||
| cell.weight.set_data( | |||
| weight_init.initializer('he_uniform', | |||
| cell.weight.shape, | |||
| cell.weight.dtype)) | |||
| if cell.bias is not None: | |||
| cell.bias.set_data( | |||
| weight_init.initializer('zeros', cell.bias.shape, | |||
| cell.bias.dtype)) | |||
| def construct(self, x): | |||
| x = self.features(x) | |||
| x = self.dropout(x) | |||
| x = self.final_conv(x) | |||
| x = self.relu(x) | |||
| x = self.mean(x, (2, 3)) | |||
| x = self.flatten(x) | |||
| return x | |||
| class SqueezeNet_Residual(nn.Cell): | |||
| r"""SqueezeNet with simple bypass model architecture from the `"SqueezeNet: | |||
| AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" | |||
| <https://arxiv.org/abs/1602.07360>`_ paper. | |||
| Get SqueezeNet with simple bypass neural network. | |||
| Args: | |||
| num_classes (int): Class number. | |||
| Returns: | |||
| Cell, cell instance of SqueezeNet with simple bypass neural network. | |||
| Examples: | |||
| >>> net = SqueezeNet_Residual(10) | |||
| """ | |||
| def __init__(self, num_classes=10): | |||
| super(SqueezeNet_Residual, self).__init__() | |||
| self.conv1 = nn.Conv2d(3, | |||
| 96, | |||
| kernel_size=7, | |||
| stride=2, | |||
| pad_mode='valid', | |||
| has_bias=True) | |||
| self.fire2 = Fire(96, 16, 64, 64) | |||
| self.fire3 = Fire(128, 16, 64, 64) | |||
| self.fire4 = Fire(128, 32, 128, 128) | |||
| self.fire5 = Fire(256, 32, 128, 128) | |||
| self.fire6 = Fire(256, 48, 192, 192) | |||
| self.fire7 = Fire(384, 48, 192, 192) | |||
| self.fire8 = Fire(384, 64, 256, 256) | |||
| self.fire9 = Fire(512, 64, 256, 256) | |||
| # Final convolution is initialized differently from the rest | |||
| self.conv10 = nn.Conv2d(512, num_classes, kernel_size=1, has_bias=True) | |||
| self.relu = nn.ReLU() | |||
| self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2) | |||
| self.add = P.TensorAdd() | |||
| self.dropout = nn.Dropout(keep_prob=0.5) | |||
| self.mean = P.ReduceMean(keep_dims=True) | |||
| self.flatten = nn.Flatten() | |||
| self.custom_init_weight() | |||
| def custom_init_weight(self): | |||
| """ | |||
| Init the weight of Conv2d in the net. | |||
| """ | |||
| for _, cell in self.cells_and_names(): | |||
| if isinstance(cell, nn.Conv2d): | |||
| if cell is self.conv10: | |||
| cell.weight.set_data( | |||
| weight_init.initializer('normal', cell.weight.shape, | |||
| cell.weight.dtype)) | |||
| else: | |||
| cell.weight.set_data( | |||
| weight_init.initializer('xavier_uniform', | |||
| cell.weight.shape, | |||
| cell.weight.dtype)) | |||
| if cell.bias is not None: | |||
| cell.bias.set_data( | |||
| weight_init.initializer('zeros', cell.bias.shape, | |||
| cell.bias.dtype)) | |||
| def construct(self, x): | |||
| x = self.conv1(x) | |||
| x = self.relu(x) | |||
| x = self.max_pool2d(x) | |||
| x = self.fire2(x) | |||
| x = self.add(x, self.fire3(x)) | |||
| x = self.fire4(x) | |||
| x = self.max_pool2d(x) | |||
| x = self.add(x, self.fire5(x)) | |||
| x = self.fire6(x) | |||
| x = self.add(x, self.fire7(x)) | |||
| x = self.fire8(x) | |||
| x = self.max_pool2d(x) | |||
| x = self.add(x, self.fire9(x)) | |||
| x = self.dropout(x) | |||
| x = self.conv10(x) | |||
| x = self.relu(x) | |||
| x = self.mean(x, (2, 3)) | |||
| x = self.flatten(x) | |||
| return x | |||
| @@ -0,0 +1,169 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """train squeezenet.""" | |||
| import os | |||
| import argparse | |||
| from mindspore import context | |||
| from mindspore import Tensor | |||
| from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore.train.model import Model | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||
| from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.communication.management import init, get_rank, get_group_size | |||
| from mindspore.common import set_seed | |||
| from src.lr_generator import get_lr | |||
| from src.CrossEntropySmooth import CrossEntropySmooth | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], | |||
| help='Model.') | |||
| parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') | |||
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | |||
| parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||
| parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') | |||
| args_opt = parser.parse_args() | |||
| set_seed(1) | |||
| if args_opt.net == "squeezenet": | |||
| from src.squeezenet import SqueezeNet as squeezenet | |||
| if args_opt.dataset == "cifar10": | |||
| from src.config import config1 as config | |||
| from src.dataset import create_dataset_cifar as create_dataset | |||
| else: | |||
| from src.config import config2 as config | |||
| from src.dataset import create_dataset_imagenet as create_dataset | |||
| else: | |||
| from src.squeezenet import SqueezeNet_Residual as squeezenet | |||
| if args_opt.dataset == "cifar10": | |||
| from src.config import config3 as config | |||
| from src.dataset import create_dataset_cifar as create_dataset | |||
| else: | |||
| from src.config import config4 as config | |||
| from src.dataset import create_dataset_imagenet as create_dataset | |||
| if __name__ == '__main__': | |||
| target = args_opt.device_target | |||
| ckpt_save_dir = config.save_checkpoint_path | |||
| # init context | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target=target) | |||
| if args_opt.run_distribute: | |||
| if target == "Ascend": | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(device_id=device_id, | |||
| enable_auto_mixed_precision=True) | |||
| context.set_auto_parallel_context( | |||
| device_num=args_opt.device_num, | |||
| parallel_mode=ParallelMode.DATA_PARALLEL, | |||
| gradients_mean=True) | |||
| init() | |||
| # GPU target | |||
| else: | |||
| init() | |||
| context.set_auto_parallel_context( | |||
| device_num=get_group_size(), | |||
| parallel_mode=ParallelMode.DATA_PARALLEL, | |||
| gradients_mean=True) | |||
| ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str( | |||
| get_rank()) + "/" | |||
| # create dataset | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||
| do_train=True, | |||
| repeat_num=1, | |||
| batch_size=config.batch_size, | |||
| target=target) | |||
| step_size = dataset.get_dataset_size() | |||
| # define net | |||
| net = squeezenet(num_classes=config.class_num) | |||
| # load checkpoint | |||
| if args_opt.pre_trained: | |||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||
| load_param_into_net(net, param_dict) | |||
| # init lr | |||
| lr = get_lr(lr_init=config.lr_init, | |||
| lr_end=config.lr_end, | |||
| lr_max=config.lr_max, | |||
| total_epochs=config.epoch_size, | |||
| warmup_epochs=config.warmup_epochs, | |||
| pretrain_epochs=config.pretrain_epoch_size, | |||
| steps_per_epoch=step_size, | |||
| lr_decay_mode=config.lr_decay_mode) | |||
| lr = Tensor(lr) | |||
| # define loss | |||
| if args_opt.dataset == "imagenet": | |||
| if not config.use_label_smooth: | |||
| config.label_smooth_factor = 0.0 | |||
| loss = CrossEntropySmooth(sparse=True, | |||
| reduction='mean', | |||
| smooth_factor=config.label_smooth_factor, | |||
| num_classes=config.class_num) | |||
| else: | |||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||
| # define opt, model | |||
| if target == "Ascend": | |||
| loss_scale = FixedLossScaleManager(config.loss_scale, | |||
| drop_overflow_update=False) | |||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), | |||
| lr, | |||
| config.momentum, | |||
| config.weight_decay, | |||
| config.loss_scale, | |||
| use_nesterov=True) | |||
| model = Model(net, | |||
| loss_fn=loss, | |||
| optimizer=opt, | |||
| loss_scale_manager=loss_scale, | |||
| metrics={'acc'}, | |||
| amp_level="O2", | |||
| keep_batchnorm_fp32=False) | |||
| else: | |||
| # GPU target | |||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), | |||
| lr, | |||
| config.momentum, | |||
| config.weight_decay, | |||
| use_nesterov=True) | |||
| model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) | |||
| # define callbacks | |||
| time_cb = TimeMonitor(data_size=step_size) | |||
| loss_cb = LossMonitor() | |||
| cb = [time_cb, loss_cb] | |||
| if config.save_checkpoint: | |||
| config_ck = CheckpointConfig( | |||
| save_checkpoint_steps=config.save_checkpoint_epochs * step_size, | |||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||
| ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset, | |||
| directory=ckpt_save_dir, | |||
| config=config_ck) | |||
| cb += [ckpt_cb] | |||
| # train model | |||
| model.train(config.epoch_size - config.pretrain_epoch_size, | |||
| dataset, | |||
| callbacks=cb) | |||