From: @GreyZzzzzzXh Reviewed-by: Signed-off-by:tags/v1.1.0
| @@ -0,0 +1,690 @@ | |||||
| # Contents | |||||
| - [SqueezeNet Description](#squeezenet-description) | |||||
| - [Model Architecture](#model-architecture) | |||||
| - [Dataset](#dataset) | |||||
| - [Features](#features) | |||||
| - [Mixed Precision](#mixed-precision) | |||||
| - [Environment Requirements](#environment-requirements) | |||||
| - [Quick Start](#quick-start) | |||||
| - [Script Description](#script-description) | |||||
| - [Script and Sample Code](#script-and-sample-code) | |||||
| - [Script Parameters](#script-parameters) | |||||
| - [Training Process](#training-process) | |||||
| - [Evaluation Process](#evaluation-process) | |||||
| - [Model Description](#model-description) | |||||
| - [Performance](#performance) | |||||
| - [Evaluation Performance](#evaluation-performance) | |||||
| - [Inference Performance](#inference-performance) | |||||
| - [How to use](#how-to-use) | |||||
| - [Inference](#inference) | |||||
| - [Continue Training on the Pretrained Model](#continue-training-on-the-pretrained-model) | |||||
| - [Transfer Learning](#transfer-learning) | |||||
| - [Description of Random Situation](#description-of-random-situation) | |||||
| - [ModelZoo Homepage](#modelzoo-homepage) | |||||
| # [SqueezeNet Description](#contents) | |||||
| SqueezeNet is a lightweight and efficient CNN model proposed by Han et al., published in ICLR-2017. SqueezeNet has 50x fewer parameters than AlexNet, but the model performance (accuracy) is close to AlexNet. | |||||
| These are examples of training SqueezeNet/SqueezeNet_Residual with CIFAR-10/ImageNet dataset in MindSpore. SqueezeNet_Residual adds residual operation on the basis of SqueezeNet, which can improve the accuracy of the model without increasing the amount of parameters. | |||||
| [Paper](https://arxiv.org/abs/1602.07360): Forrest N. Iandola and Song Han and Matthew W. Moskewicz and Khalid Ashraf and William J. Dally and Kurt Keutzer. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" | |||||
| # [Model Architecture](#contents) | |||||
| SqueezeNet is composed of fire modules. A fire module mainly includes two layers of convolution operations: one is the squeeze layer using a **1x1 convolution** kernel; the other is an expand layer using a mixture of **1x1** and **3x3 convolution** kernels. | |||||
| # [Dataset](#contents) | |||||
| Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>) | |||||
| - Dataset size:175M,60,000 32*32 colorful images in 10 classes | |||||
| - Train:146M,50,000 images | |||||
| - Test:29M,10,000 images | |||||
| - Data format:binary files | |||||
| - Note:Data will be processed in src/dataset.py | |||||
| Dataset used: [ImageNet2012](http://www.image-net.org/) | |||||
| - Dataset size: 125G, 1250k colorful images in 1000 classes | |||||
| - Train: 120G, 1200k images | |||||
| - Test: 5G, 50k images | |||||
| - Data format: RGB images. | |||||
| - Note: Data will be processed in src/dataset.py | |||||
| # [Features](#contents) | |||||
| ## Mixed Precision | |||||
| The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. | |||||
| For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. | |||||
| # [Environment Requirements](#contents) | |||||
| - Hardware(Ascend/GPU) | |||||
| - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. | |||||
| - Framework | |||||
| - [MindSpore](https://www.mindspore.cn/install/en) | |||||
| - For more information, please check the resources below: | |||||
| - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) | |||||
| - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) | |||||
| # [Quick Start](#contents) | |||||
| After installing MindSpore via the official website, you can start training and evaluation as follows: | |||||
| - runing on Ascend | |||||
| ``` | |||||
| # distributed training | |||||
| Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||||
| # standalone training | |||||
| Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||||
| # run evaluation example | |||||
| Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH] | |||||
| ``` | |||||
| - running on GPU | |||||
| ``` | |||||
| # distributed training example | |||||
| sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||||
| # standalone training example | |||||
| sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||||
| # run evaluation example | |||||
| sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH] | |||||
| ``` | |||||
| # [Script Description](#contents) | |||||
| ## [Script and Sample Code](#contents) | |||||
| ``` | |||||
| . | |||||
| └── squeezenet | |||||
| ├── README.md | |||||
| ├── scripts | |||||
| ├── run_distribute_train.sh # launch ascend distributed training(8 pcs) | |||||
| ├── run_standalone_train.sh # launch ascend standalone training(1 pcs) | |||||
| ├── run_distribute_train_gpu.sh # launch gpu distributed training(8 pcs) | |||||
| ├── run_standalone_train_gpu.sh # launch gpu standalone training(1 pcs) | |||||
| ├── run_eval.sh # launch ascend evaluation | |||||
| └── run_eval_gpu.sh # launch gpu evaluation | |||||
| ├── src | |||||
| ├── config.py # parameter configuration | |||||
| ├── dataset.py # data preprocessing | |||||
| ├── CrossEntropySmooth.py # loss definition for ImageNet dataset | |||||
| ├── lr_generator.py # generate learning rate for each step | |||||
| └── squeezenet.py # squeezenet architecture, including squeezenet and squeezenet_residual | |||||
| ├── train.py # train net | |||||
| ├── eval.py # eval net | |||||
| └── export.py # export checkpoint files into geir/onnx | |||||
| ``` | |||||
| ## [Script Parameters](#contents) | |||||
| Parameters for both training and evaluation can be set in config.py | |||||
| - config for SqueezeNet, CIFAR-10 dataset | |||||
| ```py | |||||
| "class_num": 10, # dataset class num | |||||
| "batch_size": 32, # batch size of input tensor | |||||
| "loss_scale": 1024, # loss scale | |||||
| "momentum": 0.9, # momentum | |||||
| "weight_decay": 1e-4, # weight decay | |||||
| "epoch_size": 120, # only valid for taining, which is always 1 for inference | |||||
| "pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size | |||||
| "save_checkpoint": True, # whether save checkpoint or not | |||||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step | |||||
| "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint | |||||
| "save_checkpoint_path": "./", # path to save checkpoint | |||||
| "warmup_epochs": 5, # number of warmup epoch | |||||
| "lr_decay_mode": "poly" # decay mode for generating learning rate | |||||
| "lr_init": 0, # initial learning rate | |||||
| "lr_end": 0, # final learning rate | |||||
| "lr_max": 0.01, # maximum learning rate | |||||
| ``` | |||||
| - config for SqueezeNet, ImageNet dataset | |||||
| ```py | |||||
| "class_num": 1000, # dataset class num | |||||
| "batch_size": 32, # batch size of input tensor | |||||
| "loss_scale": 1024, # loss scale | |||||
| "momentum": 0.9, # momentum | |||||
| "weight_decay": 7e-5, # weight decay | |||||
| "epoch_size": 200, # only valid for taining, which is always 1 for inference | |||||
| "pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size | |||||
| "save_checkpoint": True, # whether save checkpoint or not | |||||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step | |||||
| "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint | |||||
| "save_checkpoint_path": "./", # path to save checkpoint | |||||
| "warmup_epochs": 0, # number of warmup epoch | |||||
| "lr_decay_mode": "poly" # decay mode for generating learning rate | |||||
| "use_label_smooth": True, # label smooth | |||||
| "label_smooth_factor": 0.1, # label smooth factor | |||||
| "lr_init": 0, # initial learning rate | |||||
| "lr_end": 0, # final learning rate | |||||
| "lr_max": 0.01, # maximum learning rate | |||||
| ``` | |||||
| - config for SqueezeNet_Residual, CIFAR-10 dataset | |||||
| ```py | |||||
| "class_num": 10, # dataset class num | |||||
| "batch_size": 32, # batch size of input tensor | |||||
| "loss_scale": 1024, # loss scale | |||||
| "momentum": 0.9, # momentum | |||||
| "weight_decay": 1e-4, # weight decay | |||||
| "epoch_size": 150, # only valid for taining, which is always 1 for inference | |||||
| "pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size | |||||
| "save_checkpoint": True, # whether save checkpoint or not | |||||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step | |||||
| "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint | |||||
| "save_checkpoint_path": "./", # path to save checkpoint | |||||
| "warmup_epochs": 5, # number of warmup epoch | |||||
| "lr_decay_mode": "linear" # decay mode for generating learning rate | |||||
| "lr_init": 0, # initial learning rate | |||||
| "lr_end": 0, # final learning rate | |||||
| "lr_max": 0.01, # maximum learning rate | |||||
| ``` | |||||
| - config for SqueezeNet_Residual, ImageNet dataset | |||||
| ```py | |||||
| "class_num": 1000, # dataset class num | |||||
| "batch_size": 32, # batch size of input tensor | |||||
| "loss_scale": 1024, # loss scale | |||||
| "momentum": 0.9, # momentum | |||||
| "weight_decay": 7e-5, # weight decay | |||||
| "epoch_size": 300, # only valid for taining, which is always 1 for inference | |||||
| "pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size | |||||
| "save_checkpoint": True, # whether save checkpoint or not | |||||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step | |||||
| "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint | |||||
| "save_checkpoint_path": "./", # path to save checkpoint | |||||
| "warmup_epochs": 0, # number of warmup epoch | |||||
| "lr_decay_mode": "cosine" # decay mode for generating learning rate | |||||
| "use_label_smooth": True, # label smooth | |||||
| "label_smooth_factor": 0.1, # label smooth factor | |||||
| "lr_init": 0, # initial learning rate | |||||
| "lr_end": 0, # final learning rate | |||||
| "lr_max": 0.01, # maximum learning rate | |||||
| ``` | |||||
| For more configuration details, please refer the script `config.py`. | |||||
| ## [Training Process](#contents) | |||||
| ### Usage | |||||
| #### Running on Ascend | |||||
| ``` | |||||
| # distributed training | |||||
| Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||||
| # standalone training | |||||
| Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||||
| ``` | |||||
| For distributed training, a hccl configuration file with JSON format needs to be created in advance. | |||||
| Please follow the instructions in the link [hccl_tools](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). | |||||
| Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". Under this, you can find checkpoint file together with result like the followings in log. | |||||
| #### Running on GPU | |||||
| ``` | |||||
| # distributed training example | |||||
| sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||||
| # standalone training example | |||||
| sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||||
| ``` | |||||
| ### Result | |||||
| - Training SqueezeNet with CIFAR-10 dataset | |||||
| ``` | |||||
| # standalone training result | |||||
| epoch: 1 step 1562, loss is 1.7103254795074463 | |||||
| epoch: 2 step 1562, loss is 2.06101131439209 | |||||
| epoch: 3 step 1562, loss is 1.5594401359558105 | |||||
| epoch: 4 step 1562, loss is 1.4127278327941895 | |||||
| epoch: 5 step 1562, loss is 1.2140142917633057 | |||||
| ... | |||||
| ``` | |||||
| - Training SqueezeNet with ImageNet dataset | |||||
| ``` | |||||
| # distribute training result(8 pcs) | |||||
| epoch: 1 step 5004, loss is 5.716324329376221 | |||||
| epoch: 2 step 5004, loss is 5.350603103637695 | |||||
| epoch: 3 step 5004, loss is 4.580031394958496 | |||||
| epoch: 4 step 5004, loss is 4.784664154052734 | |||||
| epoch: 5 step 5004, loss is 4.136358261108398 | |||||
| ... | |||||
| ``` | |||||
| - Training SqueezeNet_Residual with CIFAR-10 dataset | |||||
| ``` | |||||
| # standalone training result | |||||
| epoch: 1 step 1562, loss is 2.298271656036377 | |||||
| epoch: 2 step 1562, loss is 2.2728664875030518 | |||||
| epoch: 3 step 1562, loss is 1.9493038654327393 | |||||
| epoch: 4 step 1562, loss is 1.7553865909576416 | |||||
| epoch: 5 step 1562, loss is 1.3370063304901123 | |||||
| ... | |||||
| ``` | |||||
| - Training SqueezeNet_Residual with ImageNet dataset | |||||
| ``` | |||||
| # distribute training result(8 pcs) | |||||
| epoch: 1 step 5004, loss is 6.802495002746582 | |||||
| epoch: 2 step 5004, loss is 6.386072158813477 | |||||
| epoch: 3 step 5004, loss is 5.513605117797852 | |||||
| epoch: 4 step 5004, loss is 5.312961101531982 | |||||
| epoch: 5 step 5004, loss is 4.888848304748535 | |||||
| ... | |||||
| ``` | |||||
| ## [Evaluation Process](#contents) | |||||
| ### Usage | |||||
| #### Running on Ascend | |||||
| ``` | |||||
| # evaluation | |||||
| Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH] | |||||
| ``` | |||||
| ``` | |||||
| # evaluation example | |||||
| sh scripts/run_eval.sh squeezenet cifar10 0 ~/cifar-10-verify-bin train/squeezenet_cifar10-120_1562.ckpt | |||||
| ``` | |||||
| checkpoint can be produced in training process. | |||||
| #### Running on GPU | |||||
| ``` | |||||
| sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH] | |||||
| ``` | |||||
| ### Result | |||||
| Evaluation result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the followings in log. | |||||
| - Evaluating SqueezeNet with CIFAR-10 dataset | |||||
| ``` | |||||
| result: {'top_1_accuracy': 0.8896233974358975, 'top_5_accuracy': 0.9965945512820513} | |||||
| ``` | |||||
| - Evaluating SqueezeNet with ImageNet dataset | |||||
| ``` | |||||
| result: {'top_1_accuracy': 0.5851472471190781, 'top_5_accuracy': 0.8105393725992317} | |||||
| ``` | |||||
| - Evaluating SqueezeNet_Residual with CIFAR-10 dataset | |||||
| ``` | |||||
| result: {'top_1_accuracy': 0.9077524038461539, 'top_5_accuracy': 0.9969951923076923} | |||||
| ``` | |||||
| - Evaluating SqueezeNet_Residual with ImageNet dataset | |||||
| ``` | |||||
| result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.826324423815621} | |||||
| ``` | |||||
| # [Model Description](#contents) | |||||
| ## [Performance](#contents) | |||||
| ### Evaluation Performance | |||||
| #### SqueezeNet on CIFAR-10 | |||||
| | Parameters | Ascend | | |||||
| | -------------------------- | ----------------------------------------------------------- | | |||||
| | Model Version | SqueezeNet | | |||||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | | |||||
| | uploaded Date | 11/06/2020 (month/day/year) | | |||||
| | MindSpore Version | 1.0.0 | | |||||
| | Dataset | CIFAR-10 | | |||||
| | Training Parameters | epoch=120, steps=195, batch_size=32, lr=0.01 | | |||||
| | Optimizer | Momentum | | |||||
| | Loss Function | Softmax Cross Entropy | | |||||
| | outputs | probability | | |||||
| | Loss | 0.0496 | | |||||
| | Speed | 1pc: 16.7 ms/step; 8pcs: 17.0 ms/step | | |||||
| | Total time | 1pc: 55.5 mins; 8pcs: 15.0 mins | | |||||
| | Parameters (M) | 4.8 | | |||||
| | Checkpoint for Fine tuning | 6.4M (.ckpt file) | | |||||
| | Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) | | |||||
| #### SqueezeNet on ImageNet | |||||
| | Parameters | Ascend | | |||||
| | -------------------------- | ----------------------------------------------------------- | | |||||
| | Model Version | SqueezeNet | | |||||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | | |||||
| | uploaded Date | 11/06/2020 (month/day/year) | | |||||
| | MindSpore Version | 1.0.0 | | |||||
| | Dataset | ImageNet | | |||||
| | Training Parameters | epoch=200, steps=5004, batch_size=32, lr=0.01 | | |||||
| | Optimizer | Momentum | | |||||
| | Loss Function | Softmax Cross Entropy | | |||||
| | outputs | probability | | |||||
| | Loss | 2.9150 | | |||||
| | Speed | 8pcs: 19.9 ms/step | | |||||
| | Total time | 8pcs: 5.2 hours | | |||||
| | Parameters (M) | 4.8 | | |||||
| | Checkpoint for Fine tuning | 13.3M (.ckpt file) | | |||||
| | Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) | | |||||
| #### SqueezeNet_Residual on CIFAR-10 | |||||
| | Parameters | Ascend | | |||||
| | -------------------------- | ----------------------------------------------------------- | | |||||
| | Model Version | SqueezeNet_Residual | | |||||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | | |||||
| | uploaded Date | 11/06/2020 (month/day/year) | | |||||
| | MindSpore Version | 1.0.0 | | |||||
| | Dataset | CIFAR-10 | | |||||
| | Training Parameters | epoch=150, steps=195, batch_size=32, lr=0.01 | | |||||
| | Optimizer | Momentum | | |||||
| | Loss Function | Softmax Cross Entropy | | |||||
| | outputs | probability | | |||||
| | Loss | 0.0641 | | |||||
| | Speed | 1pc: 16.9 ms/step; 8pcs: 17.3 ms/step | | |||||
| | Total time | 1pc: 68.6 mins; 8pcs: 20.9 mins | | |||||
| | Parameters (M) | 4.8 | | |||||
| | Checkpoint for Fine tuning | 6.5M (.ckpt file) | | |||||
| | Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) | | |||||
| #### SqueezeNet_Residual on ImageNet | |||||
| | Parameters | Ascend | | |||||
| | -------------------------- | ----------------------------------------------------------- | | |||||
| | Model Version | SqueezeNet_Residual | | |||||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | | |||||
| | uploaded Date | 11/06/2020 (month/day/year) | | |||||
| | MindSpore Version | 1.0.0 | | |||||
| | Dataset | ImageNet | | |||||
| | Training Parameters | epoch=300, steps=5004, batch_size=32, lr=0.01 | | |||||
| | Optimizer | Momentum | | |||||
| | Loss Function | Softmax Cross Entropy | | |||||
| | outputs | probability | | |||||
| | Loss | 2.9040 | | |||||
| | Speed | 8pcs: 20.2 ms/step | | |||||
| | Total time | 8pcs: 8.0 hours | | |||||
| | Parameters (M) | 4.8 | | |||||
| | Checkpoint for Fine tuning | 15.3M (.ckpt file) | | |||||
| | Scripts | [squeezenet script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/squeezenet) | | |||||
| ### Inference Performance | |||||
| #### SqueezeNet on CIFAR-10 | |||||
| | Parameters | Ascend | | |||||
| | ------------------- | --------------------------- | | |||||
| | Model Version | SqueezeNet | | |||||
| | Resource | Ascend 910 | | |||||
| | Uploaded Date | 11/06/2020 (month/day/year) | | |||||
| | MindSpore Version | 1.0.0 | | |||||
| | Dataset | CIFAR-10 | | |||||
| | batch_size | 32 | | |||||
| | outputs | probability | | |||||
| | Accuracy | 1pc: 89.0%; 8pcs: 84.4% | | |||||
| #### SqueezeNet on ImageNet | |||||
| | Parameters | Ascend | | |||||
| | ------------------- | --------------------------- | | |||||
| | Model Version | SqueezeNet | | |||||
| | Resource | Ascend 910 | | |||||
| | Uploaded Date | 11/06/2020 (month/day/year) | | |||||
| | MindSpore Version | 1.0.0 | | |||||
| | Dataset | ImageNet | | |||||
| | batch_size | 32 | | |||||
| | outputs | probability | | |||||
| | Accuracy | 8pcs: 58.5%(TOP1), 81.1%(TOP5) | | |||||
| #### SqueezeNet_Residual on CIFAR-10 | |||||
| | Parameters | Ascend | | |||||
| | ------------------- | --------------------------- | | |||||
| | Model Version | SqueezeNet_Residual | | |||||
| | Resource | Ascend 910 | | |||||
| | Uploaded Date | 11/06/2020 (month/day/year) | | |||||
| | MindSpore Version | 1.0.0 | | |||||
| | Dataset | CIFAR-10 | | |||||
| | batch_size | 32 | | |||||
| | outputs | probability | | |||||
| | Accuracy | 1pc: 90.8%; 8pcs: 87.4% | | |||||
| #### SqueezeNet_Residual on ImageNet | |||||
| | Parameters | Ascend | | |||||
| | ------------------- | --------------------------- | | |||||
| | Model Version | SqueezeNet_Residual | | |||||
| | Resource | Ascend 910 | | |||||
| | Uploaded Date | 11/06/2020 (month/day/year) | | |||||
| | MindSpore Version | 1.0.0 | | |||||
| | Dataset | ImageNet | | |||||
| | batch_size | 32 | | |||||
| | outputs | probability | | |||||
| | Accuracy | 8pcs: 60.9%(TOP1), 82.6%(TOP5) | | |||||
| ## [How to use](#contents) | |||||
| ### Inference | |||||
| If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example: | |||||
| - Running on Ascend | |||||
| ``` | |||||
| # Set context | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, | |||||
| device_target='Ascend', | |||||
| device_id=device_id) | |||||
| # Load unseen dataset for inference | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||||
| do_train=False, | |||||
| batch_size=config.batch_size, | |||||
| target='Ascend') | |||||
| # Define model | |||||
| net = squeezenet(num_classes=config.class_num) | |||||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||||
| model = Model(net, | |||||
| loss_fn=loss, | |||||
| metrics={'top_1_accuracy', 'top_5_accuracy'}) | |||||
| # Load pre-trained model | |||||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||||
| load_param_into_net(net, param_dict) | |||||
| net.set_train(False) | |||||
| # Make predictions on the unseen dataset | |||||
| acc = model.eval(dataset) | |||||
| print("accuracy: ", acc) | |||||
| ``` | |||||
| - Running on GPU: | |||||
| ``` | |||||
| # Set context | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, | |||||
| device_target='GPU', | |||||
| device_id=device_id) | |||||
| # Load unseen dataset for inference | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||||
| do_train=False, | |||||
| batch_size=config.batch_size, | |||||
| target='GPU') | |||||
| # Define model | |||||
| net = squeezenet(num_classes=config.class_num) | |||||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||||
| model = Model(net, | |||||
| loss_fn=loss, | |||||
| metrics={'top_1_accuracy', 'top_5_accuracy'}) | |||||
| # Load pre-trained model | |||||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||||
| load_param_into_net(net, param_dict) | |||||
| net.set_train(False) | |||||
| # Make predictions on the unseen dataset | |||||
| acc = model.eval(dataset) | |||||
| print("accuracy: ", acc) | |||||
| ``` | |||||
| ### Continue Training on the Pretrained Model | |||||
| - running on Ascend | |||||
| ``` | |||||
| # Load dataset | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||||
| do_train=True, | |||||
| repeat_num=1, | |||||
| batch_size=config.batch_size, | |||||
| target='Ascend') | |||||
| step_size = dataset.get_dataset_size() | |||||
| # define net | |||||
| net = squeezenet(num_classes=config.class_num) | |||||
| # load checkpoint | |||||
| if args_opt.pre_trained: | |||||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||||
| load_param_into_net(net, param_dict) | |||||
| # init lr | |||||
| lr = get_lr(lr_init=config.lr_init, | |||||
| lr_end=config.lr_end, | |||||
| lr_max=config.lr_max, | |||||
| total_epochs=config.epoch_size, | |||||
| warmup_epochs=config.warmup_epochs, | |||||
| pretrain_epochs=config.pretrain_epoch_size, | |||||
| steps_per_epoch=step_size, | |||||
| lr_decay_mode=config.lr_decay_mode) | |||||
| lr = Tensor(lr) | |||||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||||
| loss_scale = FixedLossScaleManager(config.loss_scale, | |||||
| drop_overflow_update=False) | |||||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), | |||||
| lr, | |||||
| config.momentum, | |||||
| config.weight_decay, | |||||
| config.loss_scale, | |||||
| use_nesterov=True) | |||||
| model = Model(net, | |||||
| loss_fn=loss, | |||||
| optimizer=opt, | |||||
| loss_scale_manager=loss_scale, | |||||
| metrics={'acc'}, | |||||
| amp_level="O2", | |||||
| keep_batchnorm_fp32=False) | |||||
| # Set callbacks | |||||
| config_ck = CheckpointConfig( | |||||
| save_checkpoint_steps=config.save_checkpoint_epochs * step_size, | |||||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||||
| time_cb = TimeMonitor(data_size=step_size) | |||||
| ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset, | |||||
| directory=ckpt_save_dir, | |||||
| config=config_ck) | |||||
| loss_cb = LossMonitor() | |||||
| # Start training | |||||
| model.train(config.epoch_size - config.pretrain_epoch_size, dataset, | |||||
| callbacks=[time_cb, ckpt_cb, loss_cb]) | |||||
| print("train success") | |||||
| ``` | |||||
| - running on GPU | |||||
| ``` | |||||
| # Load dataset | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||||
| do_train=True, | |||||
| repeat_num=1, | |||||
| batch_size=config.batch_size, | |||||
| target='Ascend') | |||||
| step_size = dataset.get_dataset_size() | |||||
| # define net | |||||
| net = squeezenet(num_classes=config.class_num) | |||||
| # load checkpoint | |||||
| if args_opt.pre_trained: | |||||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||||
| load_param_into_net(net, param_dict) | |||||
| # init lr | |||||
| lr = get_lr(lr_init=config.lr_init, | |||||
| lr_end=config.lr_end, | |||||
| lr_max=config.lr_max, | |||||
| total_epochs=config.epoch_size, | |||||
| warmup_epochs=config.warmup_epochs, | |||||
| pretrain_epochs=config.pretrain_epoch_size, | |||||
| steps_per_epoch=step_size, | |||||
| lr_decay_mode=config.lr_decay_mode) | |||||
| lr = Tensor(lr) | |||||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), | |||||
| lr, | |||||
| config.momentum, | |||||
| config.weight_decay, | |||||
| use_nesterov=True) | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) | |||||
| # Set callbacks | |||||
| config_ck = CheckpointConfig( | |||||
| save_checkpoint_steps=config.save_checkpoint_epochs * step_size, | |||||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||||
| time_cb = TimeMonitor(data_size=step_size) | |||||
| ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset, | |||||
| directory=ckpt_save_dir, | |||||
| config=config_ck) | |||||
| loss_cb = LossMonitor() | |||||
| # Start training | |||||
| model.train(config.epoch_size - config.pretrain_epoch_size, dataset, | |||||
| callbacks=[time_cb, ckpt_cb, loss_cb]) | |||||
| print("train success") | |||||
| ``` | |||||
| ### Transfer Learning | |||||
| To be added. | |||||
| # [Description of Random Situation](#contents) | |||||
| In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py. | |||||
| # [ModelZoo Homepage](#contents) | |||||
| Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | |||||
| @@ -0,0 +1,95 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """eval squeezenet.""" | |||||
| import os | |||||
| import argparse | |||||
| from mindspore import context | |||||
| from mindspore.common import set_seed | |||||
| from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | |||||
| from mindspore.train.model import Model | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from src.CrossEntropySmooth import CrossEntropySmooth | |||||
| parser = argparse.ArgumentParser(description='Image classification') | |||||
| parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], | |||||
| help='Model.') | |||||
| parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') | |||||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||||
| args_opt = parser.parse_args() | |||||
| set_seed(1) | |||||
| if args_opt.net == "squeezenet": | |||||
| from src.squeezenet import SqueezeNet as squeezenet | |||||
| if args_opt.dataset == "cifar10": | |||||
| from src.config import config1 as config | |||||
| from src.dataset import create_dataset_cifar as create_dataset | |||||
| else: | |||||
| from src.config import config2 as config | |||||
| from src.dataset import create_dataset_imagenet as create_dataset | |||||
| else: | |||||
| from src.squeezenet import SqueezeNet_Residual as squeezenet | |||||
| if args_opt.dataset == "cifar10": | |||||
| from src.config import config3 as config | |||||
| from src.dataset import create_dataset_cifar as create_dataset | |||||
| else: | |||||
| from src.config import config4 as config | |||||
| from src.dataset import create_dataset_imagenet as create_dataset | |||||
| if __name__ == '__main__': | |||||
| target = args_opt.device_target | |||||
| # init context | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, | |||||
| device_target=target, | |||||
| device_id=device_id) | |||||
| # create dataset | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||||
| do_train=False, | |||||
| batch_size=config.batch_size, | |||||
| target=target) | |||||
| step_size = dataset.get_dataset_size() | |||||
| # define net | |||||
| net = squeezenet(num_classes=config.class_num) | |||||
| # load checkpoint | |||||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||||
| load_param_into_net(net, param_dict) | |||||
| net.set_train(False) | |||||
| # define loss | |||||
| if args_opt.dataset == "imagenet": | |||||
| if not config.use_label_smooth: | |||||
| config.label_smooth_factor = 0.0 | |||||
| loss = CrossEntropySmooth(sparse=True, | |||||
| reduction='mean', | |||||
| smooth_factor=config.label_smooth_factor, | |||||
| num_classes=config.class_num) | |||||
| else: | |||||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||||
| # define model | |||||
| model = Model(net, | |||||
| loss_fn=loss, | |||||
| metrics={'top_1_accuracy', 'top_5_accuracy'}) | |||||
| # eval model | |||||
| res = model.eval(dataset) | |||||
| print("result:", res, "ckpt=", args_opt.checkpoint_path) | |||||
| @@ -0,0 +1,54 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| ##############export checkpoint file into air and onnx models################# | |||||
| python export.py --net squeezenet --dataset cifar10 --checkpoint_path squeezenet_cifar10-120_1562.ckpt | |||||
| """ | |||||
| import argparse | |||||
| import numpy as np | |||||
| from mindspore import Tensor | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net, export | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='Image classification') | |||||
| parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], | |||||
| help='Model.') | |||||
| parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') | |||||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||||
| args_opt = parser.parse_args() | |||||
| if args_opt.net == "squeezenet": | |||||
| from src.squeezenet import SqueezeNet as squeezenet | |||||
| else: | |||||
| from src.squeezenet import SqueezeNet_Residual as squeezenet | |||||
| if args_opt.dataset == "cifar10": | |||||
| num_classes = 10 | |||||
| else: | |||||
| num_classes = 1000 | |||||
| onnx_filename = args_opt.net + '_' + args_opt.dataset + '.onnx' | |||||
| air_filename = args_opt.net + '_' + args_opt.dataset + '.air' | |||||
| net = squeezenet(num_classes=num_classes) | |||||
| assert args_opt.checkpoint_path is not None, "checkpoint_path is None." | |||||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||||
| load_param_into_net(net, param_dict) | |||||
| input_arr = Tensor(np.zeros([1, 3, 227, 227], np.float32)) | |||||
| export(net, input_arr, file_name=onnx_filename, file_format="ONNX") | |||||
| export(net, input_arr, file_name=air_filename, file_format="AIR") | |||||
| @@ -0,0 +1,99 @@ | |||||
| #!/bin/bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 4 ] && [ $# != 5 ] | |||||
| then | |||||
| echo "Usage: sh scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||||
| then | |||||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||||
| then | |||||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||||
| exit 1 | |||||
| fi | |||||
| get_real_path(){ | |||||
| if [ "${1:0:1}" == "/" ]; then | |||||
| echo "$1" | |||||
| else | |||||
| echo "$(realpath -m $PWD/$1)" | |||||
| fi | |||||
| } | |||||
| PATH1=$(get_real_path $3) | |||||
| PATH2=$(get_real_path $4) | |||||
| if [ $# == 5 ] | |||||
| then | |||||
| PATH3=$(get_real_path $5) | |||||
| fi | |||||
| if [ ! -f $PATH1 ] | |||||
| then | |||||
| echo "error: RANK_TABLE_FILE=$PATH1 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| if [ ! -d $PATH2 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$PATH2 is not a directory" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $# == 5 ] && [ ! -f $PATH3 ] | |||||
| then | |||||
| echo "error: PRETRAINED_CKPT_PATH=$PATH3 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| ulimit -u unlimited | |||||
| export DEVICE_NUM=8 | |||||
| export RANK_SIZE=8 | |||||
| export RANK_TABLE_FILE=$PATH1 | |||||
| export SERVER_ID=0 | |||||
| rank_start=$((DEVICE_NUM * SERVER_ID)) | |||||
| for((i=0; i<${DEVICE_NUM}; i++)) | |||||
| do | |||||
| export DEVICE_ID=${i} | |||||
| export RANK_ID=$((rank_start + i)) | |||||
| rm -rf ./train_parallel$i | |||||
| mkdir ./train_parallel$i | |||||
| cp ./train.py ./train_parallel$i | |||||
| cp -r ./src ./train_parallel$i | |||||
| cd ./train_parallel$i || exit | |||||
| echo "start training for rank $RANK_ID, device $DEVICE_ID" | |||||
| env > env.log | |||||
| if [ $# == 4 ] | |||||
| then | |||||
| python train.py --net=$1 --dataset=$2 --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log & | |||||
| fi | |||||
| if [ $# == 5 ] | |||||
| then | |||||
| python train.py --net=$1 --dataset=$2 --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 --pre_trained=$PATH3 &> log & | |||||
| fi | |||||
| cd .. | |||||
| done | |||||
| @@ -0,0 +1,85 @@ | |||||
| #!/bin/bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 3 ] && [ $# != 4 ] | |||||
| then | |||||
| echo "Usage: sh scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||||
| then | |||||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||||
| then | |||||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||||
| exit 1 | |||||
| fi | |||||
| get_real_path(){ | |||||
| if [ "${1:0:1}" == "/" ]; then | |||||
| echo "$1" | |||||
| else | |||||
| echo "$(realpath -m $PWD/$1)" | |||||
| fi | |||||
| } | |||||
| PATH1=$(get_real_path $3) | |||||
| if [ $# == 4 ] | |||||
| then | |||||
| PATH2=$(get_real_path $4) | |||||
| fi | |||||
| if [ ! -d $PATH1 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $# == 5 ] && [ ! -f $PATH2 ] | |||||
| then | |||||
| echo "error: PRETRAINED_CKPT_PATH=$PATH2 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| ulimit -u unlimited | |||||
| export DEVICE_NUM=8 | |||||
| export RANK_SIZE=8 | |||||
| rm -rf ./train_parallel | |||||
| mkdir ./train_parallel | |||||
| cp ./train.py ./train_parallel | |||||
| cp -r ./src ./train_parallel | |||||
| cd ./train_parallel || exit | |||||
| if [ $# == 3 ] | |||||
| then | |||||
| mpirun --allow-run-as-root -n $RANK_SIZE --output-filename log_output --merge-stderr-to-stdout \ | |||||
| python train.py --net=$1 --dataset=$2 --run_distribute=True \ | |||||
| --device_num=$DEVICE_NUM --device_target="GPU" --dataset_path=$PATH1 &> log & | |||||
| fi | |||||
| if [ $# == 4 ] | |||||
| then | |||||
| mpirun --allow-run-as-root -n $RANK_SIZE --output-filename log_output --merge-stderr-to-stdout \ | |||||
| python train.py --net=$1 --dataset=$2 --run_distribute=True \ | |||||
| --device_num=$DEVICE_NUM --device_target="GPU" --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & | |||||
| fi | |||||
| @@ -0,0 +1,76 @@ | |||||
| #!/bin/bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 5 ] | |||||
| then | |||||
| echo "Usage: sh scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||||
| then | |||||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||||
| then | |||||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||||
| exit 1 | |||||
| fi | |||||
| get_real_path(){ | |||||
| if [ "${1:0:1}" == "/" ]; then | |||||
| echo "$1" | |||||
| else | |||||
| echo "$(realpath -m $PWD/$1)" | |||||
| fi | |||||
| } | |||||
| PATH1=$(get_real_path $4) | |||||
| PATH2=$(get_real_path $5) | |||||
| if [ ! -d $PATH1 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||||
| exit 1 | |||||
| fi | |||||
| if [ ! -f $PATH2 ] | |||||
| then | |||||
| echo "error: CHECKPOINT_PATH=$PATH2 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| ulimit -u unlimited | |||||
| export DEVICE_NUM=1 | |||||
| export DEVICE_ID=$3 | |||||
| export RANK_SIZE=$DEVICE_NUM | |||||
| export RANK_ID=0 | |||||
| if [ -d "eval" ]; | |||||
| then | |||||
| rm -rf ./eval | |||||
| fi | |||||
| mkdir ./eval | |||||
| cp ./eval.py ./eval | |||||
| cp -r ./src ./eval | |||||
| cd ./eval || exit | |||||
| env > env.log | |||||
| echo "start evaluation for device $DEVICE_ID" | |||||
| python eval.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --checkpoint_path=$PATH2 &> log & | |||||
| cd .. | |||||
| @@ -0,0 +1,76 @@ | |||||
| #!/bin/bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 5 ] | |||||
| then | |||||
| echo "Usage: sh scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||||
| then | |||||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||||
| then | |||||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||||
| exit 1 | |||||
| fi | |||||
| get_real_path(){ | |||||
| if [ "${1:0:1}" == "/" ]; then | |||||
| echo "$1" | |||||
| else | |||||
| echo "$(realpath -m $PWD/$1)" | |||||
| fi | |||||
| } | |||||
| PATH1=$(get_real_path $4) | |||||
| PATH2=$(get_real_path $5) | |||||
| if [ ! -d $PATH1 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||||
| exit 1 | |||||
| fi | |||||
| if [ ! -f $PATH2 ] | |||||
| then | |||||
| echo "error: CHECKPOINT_PATH=$PATH2 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| ulimit -u unlimited | |||||
| export DEVICE_NUM=1 | |||||
| export DEVICE_ID=$3 | |||||
| export RANK_SIZE=$DEVICE_NUM | |||||
| export RANK_ID=0 | |||||
| if [ -d "eval" ]; | |||||
| then | |||||
| rm -rf ./eval | |||||
| fi | |||||
| mkdir ./eval | |||||
| cp ./eval.py ./eval | |||||
| cp -r ./src ./eval | |||||
| cd ./eval || exit | |||||
| env > env.log | |||||
| echo "start evaluation for device $DEVICE_ID" | |||||
| python eval.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --checkpoint_path=$PATH2 --device_target="GPU" &> log & | |||||
| cd .. | |||||
| @@ -0,0 +1,87 @@ | |||||
| #!/bin/bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 4 ] && [ $# != 5 ] | |||||
| then | |||||
| echo "Usage: sh scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||||
| then | |||||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||||
| then | |||||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||||
| exit 1 | |||||
| fi | |||||
| get_real_path(){ | |||||
| if [ "${1:0:1}" == "/" ]; then | |||||
| echo "$1" | |||||
| else | |||||
| echo "$(realpath -m $PWD/$1)" | |||||
| fi | |||||
| } | |||||
| PATH1=$(get_real_path $4) | |||||
| if [ $# == 5 ] | |||||
| then | |||||
| PATH2=$(get_real_path $5) | |||||
| fi | |||||
| if [ ! -d $PATH1 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $# == 5 ] && [ ! -f $PATH2 ] | |||||
| then | |||||
| echo "error: PRETRAINED_CKPT_PATH=$PATH2 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| ulimit -u unlimited | |||||
| export DEVICE_NUM=1 | |||||
| export DEVICE_ID=$3 | |||||
| export RANK_ID=0 | |||||
| export RANK_SIZE=1 | |||||
| if [ -d "train" ]; | |||||
| then | |||||
| rm -rf ./train | |||||
| fi | |||||
| mkdir ./train | |||||
| cp ./train.py ./train | |||||
| cp -r ./src ./train | |||||
| cd ./train || exit | |||||
| echo "start training for device $DEVICE_ID" | |||||
| env > env.log | |||||
| if [ $# == 4 ] | |||||
| then | |||||
| python train.py --net=$1 --dataset=$2 --dataset_path=$PATH1 &> log & | |||||
| fi | |||||
| if [ $# == 5 ] | |||||
| then | |||||
| python train.py --net=$1 --dataset=$2 --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & | |||||
| fi | |||||
| cd .. | |||||
| @@ -0,0 +1,87 @@ | |||||
| #!/bin/bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 4 ] && [ $# != 5 ] | |||||
| then | |||||
| echo "Usage: sh scripts/run_standalone_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $1 != "squeezenet" ] && [ $1 != "squeezenet_residual" ] | |||||
| then | |||||
| echo "error: the selected net is neither squeezenet nor squeezenet_residual" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $2 != "cifar10" ] && [ $2 != "imagenet" ] | |||||
| then | |||||
| echo "error: the selected dataset is neither cifar10 nor imagenet" | |||||
| exit 1 | |||||
| fi | |||||
| get_real_path(){ | |||||
| if [ "${1:0:1}" == "/" ]; then | |||||
| echo "$1" | |||||
| else | |||||
| echo "$(realpath -m $PWD/$1)" | |||||
| fi | |||||
| } | |||||
| PATH1=$(get_real_path $4) | |||||
| if [ $# == 5 ] | |||||
| then | |||||
| PATH2=$(get_real_path $5) | |||||
| fi | |||||
| if [ ! -d $PATH1 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||||
| exit 1 | |||||
| fi | |||||
| if [ $# == 5 ] && [ ! -f $PATH2 ] | |||||
| then | |||||
| echo "error: PRETRAINED_CKPT_PATH=$PATH2 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| ulimit -u unlimited | |||||
| export DEVICE_NUM=1 | |||||
| export DEVICE_ID=$3 | |||||
| export RANK_ID=0 | |||||
| export RANK_SIZE=1 | |||||
| if [ -d "train" ]; | |||||
| then | |||||
| rm -rf ./train | |||||
| fi | |||||
| mkdir ./train | |||||
| cp ./train.py ./train | |||||
| cp -r ./src ./train | |||||
| cd ./train || exit | |||||
| echo "start training for device $DEVICE_ID" | |||||
| env > env.log | |||||
| if [ $# == 4 ] | |||||
| then | |||||
| python train.py --net=$1 --dataset=$2 --device_target="GPU" --dataset_path=$PATH1 &> log & | |||||
| fi | |||||
| if [ $# == 5 ] | |||||
| then | |||||
| python train.py --net=$1 --dataset=$2 --device_target="GPU" --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & | |||||
| fi | |||||
| cd .. | |||||
| @@ -0,0 +1,38 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """define loss function for network""" | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.common import dtype as mstype | |||||
| from mindspore.nn.loss.loss import _Loss | |||||
| from mindspore.ops import functional as F | |||||
| from mindspore.ops import operations as P | |||||
| class CrossEntropySmooth(_Loss): | |||||
| """CrossEntropy""" | |||||
| def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000): | |||||
| super(CrossEntropySmooth, self).__init__() | |||||
| self.onehot = P.OneHot() | |||||
| self.sparse = sparse | |||||
| self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) | |||||
| self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) | |||||
| self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction) | |||||
| def construct(self, logit, label): | |||||
| if self.sparse: | |||||
| label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) | |||||
| loss = self.ce(logit, label) | |||||
| return loss | |||||
| @@ -0,0 +1,102 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| network config setting, will be used in train.py and eval.py | |||||
| """ | |||||
| from easydict import EasyDict as ed | |||||
| # config for squeezenet, cifar10 | |||||
| config1 = ed({ | |||||
| "class_num": 10, | |||||
| "batch_size": 32, | |||||
| "loss_scale": 1024, | |||||
| "momentum": 0.9, | |||||
| "weight_decay": 1e-4, | |||||
| "epoch_size": 120, | |||||
| "pretrain_epoch_size": 0, | |||||
| "save_checkpoint": True, | |||||
| "save_checkpoint_epochs": 1, | |||||
| "keep_checkpoint_max": 10, | |||||
| "save_checkpoint_path": "./", | |||||
| "warmup_epochs": 5, | |||||
| "lr_decay_mode": "poly", | |||||
| "lr_init": 0, | |||||
| "lr_end": 0, | |||||
| "lr_max": 0.01 | |||||
| }) | |||||
| # config for squeezenet, imagenet | |||||
| config2 = ed({ | |||||
| "class_num": 1000, | |||||
| "batch_size": 32, | |||||
| "loss_scale": 1024, | |||||
| "momentum": 0.9, | |||||
| "weight_decay": 7e-5, | |||||
| "epoch_size": 200, | |||||
| "pretrain_epoch_size": 0, | |||||
| "save_checkpoint": True, | |||||
| "save_checkpoint_epochs": 1, | |||||
| "keep_checkpoint_max": 10, | |||||
| "save_checkpoint_path": "./", | |||||
| "warmup_epochs": 0, | |||||
| "lr_decay_mode": "poly", | |||||
| "use_label_smooth": True, | |||||
| "label_smooth_factor": 0.1, | |||||
| "lr_init": 0, | |||||
| "lr_end": 0, | |||||
| "lr_max": 0.01 | |||||
| }) | |||||
| # config for squeezenet_residual, cifar10 | |||||
| config3 = ed({ | |||||
| "class_num": 10, | |||||
| "batch_size": 32, | |||||
| "loss_scale": 1024, | |||||
| "momentum": 0.9, | |||||
| "weight_decay": 1e-4, | |||||
| "epoch_size": 150, | |||||
| "pretrain_epoch_size": 0, | |||||
| "save_checkpoint": True, | |||||
| "save_checkpoint_epochs": 1, | |||||
| "keep_checkpoint_max": 10, | |||||
| "save_checkpoint_path": "./", | |||||
| "warmup_epochs": 5, | |||||
| "lr_decay_mode": "linear", | |||||
| "lr_init": 0, | |||||
| "lr_end": 0, | |||||
| "lr_max": 0.01 | |||||
| }) | |||||
| # config for squeezenet_residual, imagenet | |||||
| config4 = ed({ | |||||
| "class_num": 1000, | |||||
| "batch_size": 32, | |||||
| "loss_scale": 1024, | |||||
| "momentum": 0.9, | |||||
| "weight_decay": 7e-5, | |||||
| "epoch_size": 300, | |||||
| "pretrain_epoch_size": 0, | |||||
| "save_checkpoint": True, | |||||
| "save_checkpoint_epochs": 1, | |||||
| "keep_checkpoint_max": 10, | |||||
| "save_checkpoint_path": "./", | |||||
| "warmup_epochs": 0, | |||||
| "lr_decay_mode": "cosine", | |||||
| "use_label_smooth": True, | |||||
| "label_smooth_factor": 0.1, | |||||
| "lr_init": 0, | |||||
| "lr_end": 0, | |||||
| "lr_max": 0.01 | |||||
| }) | |||||
| @@ -0,0 +1,191 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| create train or eval dataset. | |||||
| """ | |||||
| import os | |||||
| import mindspore.common.dtype as mstype | |||||
| import mindspore.dataset.engine as de | |||||
| import mindspore.dataset.vision.c_transforms as C | |||||
| import mindspore.dataset.transforms.c_transforms as C2 | |||||
| from mindspore.communication.management import init, get_rank, get_group_size | |||||
| def create_dataset_cifar(dataset_path, | |||||
| do_train, | |||||
| repeat_num=1, | |||||
| batch_size=32, | |||||
| target="Ascend"): | |||||
| """ | |||||
| create a train or evaluate cifar10 dataset | |||||
| Args: | |||||
| dataset_path(string): the path of dataset. | |||||
| do_train(bool): whether dataset is used for train or eval. | |||||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||||
| batch_size(int): the batch size of dataset. Default: 32 | |||||
| target(str): the device target. Default: Ascend | |||||
| Returns: | |||||
| dataset | |||||
| """ | |||||
| if target == "Ascend": | |||||
| device_num, rank_id = _get_rank_info() | |||||
| else: | |||||
| init() | |||||
| rank_id = get_rank() | |||||
| device_num = get_group_size() | |||||
| if device_num == 1: | |||||
| ds = de.Cifar10Dataset(dataset_path, | |||||
| num_parallel_workers=8, | |||||
| shuffle=True) | |||||
| else: | |||||
| ds = de.Cifar10Dataset(dataset_path, | |||||
| num_parallel_workers=8, | |||||
| shuffle=True, | |||||
| num_shards=device_num, | |||||
| shard_id=rank_id) | |||||
| # define map operations | |||||
| if do_train: | |||||
| trans = [ | |||||
| C.RandomCrop((32, 32), (4, 4, 4, 4)), | |||||
| C.RandomHorizontalFlip(prob=0.5), | |||||
| C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4), | |||||
| C.Resize((227, 227)), | |||||
| C.Rescale(1.0 / 255.0, 0.0), | |||||
| C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), | |||||
| C.CutOut(112), | |||||
| C.HWC2CHW() | |||||
| ] | |||||
| else: | |||||
| trans = [ | |||||
| C.Resize((227, 227)), | |||||
| C.Rescale(1.0 / 255.0, 0.0), | |||||
| C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), | |||||
| C.HWC2CHW() | |||||
| ] | |||||
| type_cast_op = C2.TypeCast(mstype.int32) | |||||
| ds = ds.map(operations=type_cast_op, | |||||
| input_columns="label", | |||||
| num_parallel_workers=8) | |||||
| ds = ds.map(operations=trans, | |||||
| input_columns="image", | |||||
| num_parallel_workers=8) | |||||
| # apply batch operations | |||||
| ds = ds.batch(batch_size, drop_remainder=True) | |||||
| # apply dataset repeat operation | |||||
| ds = ds.repeat(repeat_num) | |||||
| return ds | |||||
| def create_dataset_imagenet(dataset_path, | |||||
| do_train, | |||||
| repeat_num=1, | |||||
| batch_size=32, | |||||
| target="Ascend"): | |||||
| """ | |||||
| create a train or eval imagenet dataset | |||||
| Args: | |||||
| dataset_path(string): the path of dataset. | |||||
| do_train(bool): whether dataset is used for train or eval. | |||||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||||
| batch_size(int): the batch size of dataset. Default: 32 | |||||
| target(str): the device target. Default: Ascend | |||||
| Returns: | |||||
| dataset | |||||
| """ | |||||
| if target == "Ascend": | |||||
| device_num, rank_id = _get_rank_info() | |||||
| else: | |||||
| init() | |||||
| rank_id = get_rank() | |||||
| device_num = get_group_size() | |||||
| if device_num == 1: | |||||
| ds = de.ImageFolderDataset(dataset_path, | |||||
| num_parallel_workers=8, | |||||
| shuffle=True) | |||||
| else: | |||||
| ds = de.ImageFolderDataset(dataset_path, | |||||
| num_parallel_workers=8, | |||||
| shuffle=True, | |||||
| num_shards=device_num, | |||||
| shard_id=rank_id) | |||||
| image_size = 227 | |||||
| mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] | |||||
| std = [0.229 * 255, 0.224 * 255, 0.225 * 255] | |||||
| # define map operations | |||||
| if do_train: | |||||
| trans = [ | |||||
| C.RandomCropDecodeResize(image_size, | |||||
| scale=(0.08, 1.0), | |||||
| ratio=(0.75, 1.333)), | |||||
| C.RandomHorizontalFlip(prob=0.5), | |||||
| C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4), | |||||
| C.Normalize(mean=mean, std=std), | |||||
| C.CutOut(112), | |||||
| C.HWC2CHW() | |||||
| ] | |||||
| else: | |||||
| trans = [ | |||||
| C.Decode(), | |||||
| C.Resize((256, 256)), | |||||
| C.CenterCrop(image_size), | |||||
| C.Normalize(mean=mean, std=std), | |||||
| C.HWC2CHW() | |||||
| ] | |||||
| type_cast_op = C2.TypeCast(mstype.int32) | |||||
| ds = ds.map(operations=type_cast_op, | |||||
| input_columns="label", | |||||
| num_parallel_workers=8) | |||||
| ds = ds.map(operations=trans, | |||||
| input_columns="image", | |||||
| num_parallel_workers=8) | |||||
| # apply batch operations | |||||
| ds = ds.batch(batch_size, drop_remainder=True) | |||||
| # apply dataset repeat operation | |||||
| ds = ds.repeat(repeat_num) | |||||
| return ds | |||||
| def _get_rank_info(): | |||||
| """ | |||||
| get rank size and rank id | |||||
| """ | |||||
| rank_size = int(os.environ.get("RANK_SIZE", 1)) | |||||
| if rank_size > 1: | |||||
| rank_size = get_group_size() | |||||
| rank_id = get_rank() | |||||
| else: | |||||
| rank_size = 1 | |||||
| rank_id = 0 | |||||
| return rank_size, rank_id | |||||
| @@ -0,0 +1,106 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """learning rate generator""" | |||||
| import math | |||||
| import numpy as np | |||||
| def get_lr(lr_init, lr_end, lr_max, total_epochs, warmup_epochs, | |||||
| pretrain_epochs, steps_per_epoch, lr_decay_mode): | |||||
| """ | |||||
| generate learning rate array | |||||
| Args: | |||||
| lr_init(float): init learning rate | |||||
| lr_end(float): end learning rate | |||||
| lr_max(float): max learning rate | |||||
| total_epochs(int): total epoch of training | |||||
| warmup_epochs(int): number of warmup epochs | |||||
| pretrain_epochs(int): number of pretrain epochs | |||||
| steps_per_epoch(int): steps of one epoch | |||||
| lr_decay_mode(string): learning rate decay mode, | |||||
| including steps, poly, linear or cosine | |||||
| Returns: | |||||
| np.array, learning rate array | |||||
| """ | |||||
| lr_each_step = [] | |||||
| total_steps = steps_per_epoch * total_epochs | |||||
| warmup_steps = steps_per_epoch * warmup_epochs | |||||
| pretrain_steps = steps_per_epoch * pretrain_epochs | |||||
| decay_steps = total_steps - warmup_steps | |||||
| if lr_decay_mode == 'steps': | |||||
| decay_epoch_index = [ | |||||
| 0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps | |||||
| ] | |||||
| for i in range(total_steps): | |||||
| if i < decay_epoch_index[0]: | |||||
| lr = lr_max | |||||
| elif i < decay_epoch_index[1]: | |||||
| lr = lr_max * 0.1 | |||||
| elif i < decay_epoch_index[2]: | |||||
| lr = lr_max * 0.01 | |||||
| else: | |||||
| lr = lr_max * 0.001 | |||||
| lr_each_step.append(lr) | |||||
| elif lr_decay_mode == 'poly': | |||||
| for i in range(total_steps): | |||||
| if i < warmup_steps: | |||||
| lr = linear_warmup_lr(i, warmup_steps, lr_max, lr_init) | |||||
| else: | |||||
| base = (1.0 - (i - warmup_steps) / decay_steps) | |||||
| lr = lr_max * base * base | |||||
| lr_each_step.append(lr) | |||||
| elif lr_decay_mode == 'linear': | |||||
| for i in range(total_steps): | |||||
| if i < warmup_steps: | |||||
| lr = linear_warmup_lr(i, warmup_steps, lr_max, lr_init) | |||||
| else: | |||||
| lr = lr_max - (lr_max - lr_end) * (i - | |||||
| warmup_steps) / decay_steps | |||||
| lr_each_step.append(lr) | |||||
| elif lr_decay_mode == 'cosine': | |||||
| for i in range(total_steps): | |||||
| if i < warmup_steps: | |||||
| lr = linear_warmup_lr(i, warmup_steps, lr_max, lr_init) | |||||
| else: | |||||
| linear_decay = (total_steps - i) / decay_steps | |||||
| cosine_decay = 0.5 * ( | |||||
| 1 + math.cos(math.pi * 2 * 0.47 * | |||||
| (i - warmup_steps) / decay_steps)) | |||||
| decayed = linear_decay * cosine_decay + 0.00001 | |||||
| lr = lr_max * decayed | |||||
| lr_each_step.append(lr) | |||||
| else: | |||||
| raise NotImplementedError( | |||||
| 'Learning rate decay mode [{:s}] cannot be recognized'.format( | |||||
| lr_decay_mode)) | |||||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||||
| learning_rate = lr_each_step[pretrain_steps:] | |||||
| return learning_rate | |||||
| def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr): | |||||
| lr_inc = (base_lr - init_lr) / warmup_steps | |||||
| lr = init_lr + lr_inc * current_step | |||||
| return lr | |||||
| @@ -0,0 +1,216 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Squeezenet.""" | |||||
| import mindspore.nn as nn | |||||
| from mindspore.common import initializer as weight_init | |||||
| from mindspore.ops import operations as P | |||||
| class Fire(nn.Cell): | |||||
| def __init__(self, inplanes, squeeze_planes, expand1x1_planes, | |||||
| expand3x3_planes): | |||||
| super(Fire, self).__init__() | |||||
| self.inplanes = inplanes | |||||
| self.squeeze = nn.Conv2d(inplanes, | |||||
| squeeze_planes, | |||||
| kernel_size=1, | |||||
| has_bias=True) | |||||
| self.squeeze_activation = nn.ReLU() | |||||
| self.expand1x1 = nn.Conv2d(squeeze_planes, | |||||
| expand1x1_planes, | |||||
| kernel_size=1, | |||||
| has_bias=True) | |||||
| self.expand1x1_activation = nn.ReLU() | |||||
| self.expand3x3 = nn.Conv2d(squeeze_planes, | |||||
| expand3x3_planes, | |||||
| kernel_size=3, | |||||
| pad_mode='same', | |||||
| has_bias=True) | |||||
| self.expand3x3_activation = nn.ReLU() | |||||
| self.concat = P.Concat(axis=1) | |||||
| def construct(self, x): | |||||
| x = self.squeeze_activation(self.squeeze(x)) | |||||
| return self.concat((self.expand1x1_activation(self.expand1x1(x)), | |||||
| self.expand3x3_activation(self.expand3x3(x)))) | |||||
| class SqueezeNet(nn.Cell): | |||||
| r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level | |||||
| accuracy with 50x fewer parameters and <0.5MB model size" | |||||
| <https://arxiv.org/abs/1602.07360>`_ paper. | |||||
| Get SqueezeNet neural network. | |||||
| Args: | |||||
| num_classes (int): Class number. | |||||
| Returns: | |||||
| Cell, cell instance of SqueezeNet neural network. | |||||
| Examples: | |||||
| >>> net = SqueezeNet(10) | |||||
| """ | |||||
| def __init__(self, num_classes=10): | |||||
| super(SqueezeNet, self).__init__() | |||||
| self.features = nn.SequentialCell([ | |||||
| nn.Conv2d(3, | |||||
| 96, | |||||
| kernel_size=7, | |||||
| stride=2, | |||||
| pad_mode='valid', | |||||
| has_bias=True), | |||||
| nn.ReLU(), | |||||
| nn.MaxPool2d(kernel_size=3, stride=2), | |||||
| Fire(96, 16, 64, 64), | |||||
| Fire(128, 16, 64, 64), | |||||
| Fire(128, 32, 128, 128), | |||||
| nn.MaxPool2d(kernel_size=3, stride=2), | |||||
| Fire(256, 32, 128, 128), | |||||
| Fire(256, 48, 192, 192), | |||||
| Fire(384, 48, 192, 192), | |||||
| Fire(384, 64, 256, 256), | |||||
| nn.MaxPool2d(kernel_size=3, stride=2), | |||||
| Fire(512, 64, 256, 256), | |||||
| ]) | |||||
| # Final convolution is initialized differently from the rest | |||||
| self.final_conv = nn.Conv2d(512, | |||||
| num_classes, | |||||
| kernel_size=1, | |||||
| has_bias=True) | |||||
| self.dropout = nn.Dropout(keep_prob=0.5) | |||||
| self.relu = nn.ReLU() | |||||
| self.mean = P.ReduceMean(keep_dims=True) | |||||
| self.flatten = nn.Flatten() | |||||
| self.custom_init_weight() | |||||
| def custom_init_weight(self): | |||||
| """ | |||||
| Init the weight of Conv2d in the net. | |||||
| """ | |||||
| for _, cell in self.cells_and_names(): | |||||
| if isinstance(cell, nn.Conv2d): | |||||
| if cell is self.final_conv: | |||||
| cell.weight.set_data( | |||||
| weight_init.initializer('normal', cell.weight.shape, | |||||
| cell.weight.dtype)) | |||||
| else: | |||||
| cell.weight.set_data( | |||||
| weight_init.initializer('he_uniform', | |||||
| cell.weight.shape, | |||||
| cell.weight.dtype)) | |||||
| if cell.bias is not None: | |||||
| cell.bias.set_data( | |||||
| weight_init.initializer('zeros', cell.bias.shape, | |||||
| cell.bias.dtype)) | |||||
| def construct(self, x): | |||||
| x = self.features(x) | |||||
| x = self.dropout(x) | |||||
| x = self.final_conv(x) | |||||
| x = self.relu(x) | |||||
| x = self.mean(x, (2, 3)) | |||||
| x = self.flatten(x) | |||||
| return x | |||||
| class SqueezeNet_Residual(nn.Cell): | |||||
| r"""SqueezeNet with simple bypass model architecture from the `"SqueezeNet: | |||||
| AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" | |||||
| <https://arxiv.org/abs/1602.07360>`_ paper. | |||||
| Get SqueezeNet with simple bypass neural network. | |||||
| Args: | |||||
| num_classes (int): Class number. | |||||
| Returns: | |||||
| Cell, cell instance of SqueezeNet with simple bypass neural network. | |||||
| Examples: | |||||
| >>> net = SqueezeNet_Residual(10) | |||||
| """ | |||||
| def __init__(self, num_classes=10): | |||||
| super(SqueezeNet_Residual, self).__init__() | |||||
| self.conv1 = nn.Conv2d(3, | |||||
| 96, | |||||
| kernel_size=7, | |||||
| stride=2, | |||||
| pad_mode='valid', | |||||
| has_bias=True) | |||||
| self.fire2 = Fire(96, 16, 64, 64) | |||||
| self.fire3 = Fire(128, 16, 64, 64) | |||||
| self.fire4 = Fire(128, 32, 128, 128) | |||||
| self.fire5 = Fire(256, 32, 128, 128) | |||||
| self.fire6 = Fire(256, 48, 192, 192) | |||||
| self.fire7 = Fire(384, 48, 192, 192) | |||||
| self.fire8 = Fire(384, 64, 256, 256) | |||||
| self.fire9 = Fire(512, 64, 256, 256) | |||||
| # Final convolution is initialized differently from the rest | |||||
| self.conv10 = nn.Conv2d(512, num_classes, kernel_size=1, has_bias=True) | |||||
| self.relu = nn.ReLU() | |||||
| self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2) | |||||
| self.add = P.TensorAdd() | |||||
| self.dropout = nn.Dropout(keep_prob=0.5) | |||||
| self.mean = P.ReduceMean(keep_dims=True) | |||||
| self.flatten = nn.Flatten() | |||||
| self.custom_init_weight() | |||||
| def custom_init_weight(self): | |||||
| """ | |||||
| Init the weight of Conv2d in the net. | |||||
| """ | |||||
| for _, cell in self.cells_and_names(): | |||||
| if isinstance(cell, nn.Conv2d): | |||||
| if cell is self.conv10: | |||||
| cell.weight.set_data( | |||||
| weight_init.initializer('normal', cell.weight.shape, | |||||
| cell.weight.dtype)) | |||||
| else: | |||||
| cell.weight.set_data( | |||||
| weight_init.initializer('xavier_uniform', | |||||
| cell.weight.shape, | |||||
| cell.weight.dtype)) | |||||
| if cell.bias is not None: | |||||
| cell.bias.set_data( | |||||
| weight_init.initializer('zeros', cell.bias.shape, | |||||
| cell.bias.dtype)) | |||||
| def construct(self, x): | |||||
| x = self.conv1(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.fire2(x) | |||||
| x = self.add(x, self.fire3(x)) | |||||
| x = self.fire4(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.add(x, self.fire5(x)) | |||||
| x = self.fire6(x) | |||||
| x = self.add(x, self.fire7(x)) | |||||
| x = self.fire8(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.add(x, self.fire9(x)) | |||||
| x = self.dropout(x) | |||||
| x = self.conv10(x) | |||||
| x = self.relu(x) | |||||
| x = self.mean(x, (2, 3)) | |||||
| x = self.flatten(x) | |||||
| return x | |||||
| @@ -0,0 +1,169 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """train squeezenet.""" | |||||
| import os | |||||
| import argparse | |||||
| from mindspore import context | |||||
| from mindspore import Tensor | |||||
| from mindspore.nn.optim.momentum import Momentum | |||||
| from mindspore.train.model import Model | |||||
| from mindspore.context import ParallelMode | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||||
| from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | |||||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.communication.management import init, get_rank, get_group_size | |||||
| from mindspore.common import set_seed | |||||
| from src.lr_generator import get_lr | |||||
| from src.CrossEntropySmooth import CrossEntropySmooth | |||||
| parser = argparse.ArgumentParser(description='Image classification') | |||||
| parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'], | |||||
| help='Model.') | |||||
| parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.') | |||||
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | |||||
| parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||||
| parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') | |||||
| parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') | |||||
| args_opt = parser.parse_args() | |||||
| set_seed(1) | |||||
| if args_opt.net == "squeezenet": | |||||
| from src.squeezenet import SqueezeNet as squeezenet | |||||
| if args_opt.dataset == "cifar10": | |||||
| from src.config import config1 as config | |||||
| from src.dataset import create_dataset_cifar as create_dataset | |||||
| else: | |||||
| from src.config import config2 as config | |||||
| from src.dataset import create_dataset_imagenet as create_dataset | |||||
| else: | |||||
| from src.squeezenet import SqueezeNet_Residual as squeezenet | |||||
| if args_opt.dataset == "cifar10": | |||||
| from src.config import config3 as config | |||||
| from src.dataset import create_dataset_cifar as create_dataset | |||||
| else: | |||||
| from src.config import config4 as config | |||||
| from src.dataset import create_dataset_imagenet as create_dataset | |||||
| if __name__ == '__main__': | |||||
| target = args_opt.device_target | |||||
| ckpt_save_dir = config.save_checkpoint_path | |||||
| # init context | |||||
| context.set_context(mode=context.GRAPH_MODE, | |||||
| device_target=target) | |||||
| if args_opt.run_distribute: | |||||
| if target == "Ascend": | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(device_id=device_id, | |||||
| enable_auto_mixed_precision=True) | |||||
| context.set_auto_parallel_context( | |||||
| device_num=args_opt.device_num, | |||||
| parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| gradients_mean=True) | |||||
| init() | |||||
| # GPU target | |||||
| else: | |||||
| init() | |||||
| context.set_auto_parallel_context( | |||||
| device_num=get_group_size(), | |||||
| parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| gradients_mean=True) | |||||
| ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str( | |||||
| get_rank()) + "/" | |||||
| # create dataset | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||||
| do_train=True, | |||||
| repeat_num=1, | |||||
| batch_size=config.batch_size, | |||||
| target=target) | |||||
| step_size = dataset.get_dataset_size() | |||||
| # define net | |||||
| net = squeezenet(num_classes=config.class_num) | |||||
| # load checkpoint | |||||
| if args_opt.pre_trained: | |||||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||||
| load_param_into_net(net, param_dict) | |||||
| # init lr | |||||
| lr = get_lr(lr_init=config.lr_init, | |||||
| lr_end=config.lr_end, | |||||
| lr_max=config.lr_max, | |||||
| total_epochs=config.epoch_size, | |||||
| warmup_epochs=config.warmup_epochs, | |||||
| pretrain_epochs=config.pretrain_epoch_size, | |||||
| steps_per_epoch=step_size, | |||||
| lr_decay_mode=config.lr_decay_mode) | |||||
| lr = Tensor(lr) | |||||
| # define loss | |||||
| if args_opt.dataset == "imagenet": | |||||
| if not config.use_label_smooth: | |||||
| config.label_smooth_factor = 0.0 | |||||
| loss = CrossEntropySmooth(sparse=True, | |||||
| reduction='mean', | |||||
| smooth_factor=config.label_smooth_factor, | |||||
| num_classes=config.class_num) | |||||
| else: | |||||
| loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||||
| # define opt, model | |||||
| if target == "Ascend": | |||||
| loss_scale = FixedLossScaleManager(config.loss_scale, | |||||
| drop_overflow_update=False) | |||||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), | |||||
| lr, | |||||
| config.momentum, | |||||
| config.weight_decay, | |||||
| config.loss_scale, | |||||
| use_nesterov=True) | |||||
| model = Model(net, | |||||
| loss_fn=loss, | |||||
| optimizer=opt, | |||||
| loss_scale_manager=loss_scale, | |||||
| metrics={'acc'}, | |||||
| amp_level="O2", | |||||
| keep_batchnorm_fp32=False) | |||||
| else: | |||||
| # GPU target | |||||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), | |||||
| lr, | |||||
| config.momentum, | |||||
| config.weight_decay, | |||||
| use_nesterov=True) | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) | |||||
| # define callbacks | |||||
| time_cb = TimeMonitor(data_size=step_size) | |||||
| loss_cb = LossMonitor() | |||||
| cb = [time_cb, loss_cb] | |||||
| if config.save_checkpoint: | |||||
| config_ck = CheckpointConfig( | |||||
| save_checkpoint_steps=config.save_checkpoint_epochs * step_size, | |||||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||||
| ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset, | |||||
| directory=ckpt_save_dir, | |||||
| config=config_ck) | |||||
| cb += [ckpt_cb] | |||||
| # train model | |||||
| model.train(config.epoch_size - config.pretrain_epoch_size, | |||||
| dataset, | |||||
| callbacks=cb) | |||||