| @@ -14,7 +14,6 @@ | |||
| # ============================================================================ | |||
| """Bernoulli Distribution""" | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import composite as C | |||
| from .distribution import Distribution | |||
| from ._utils.utils import cast_to_tensor, check_prob | |||
| from ...common import dtype as mstype | |||
| @@ -54,7 +53,6 @@ class Bernoulli(Distribution): | |||
| check_prob(self._probs) | |||
| else: | |||
| self._probs = probs | |||
| self.seed = seed | |||
| # ops needed for the class | |||
| self.log = P.Log() | |||
| @@ -66,6 +64,7 @@ class Bernoulli(Distribution): | |||
| self.const = P.ScalarToArray() | |||
| self.less = P.Less() | |||
| self.cast = P.Cast() | |||
| self.normal = P.Normal(seed=seed) | |||
| self.erf = P.Erf() | |||
| self.sqrt = P.Sqrt() | |||
| @@ -160,7 +159,7 @@ class Bernoulli(Distribution): | |||
| mean_zero = self.const(0.0) | |||
| sd_one = self.const(1.0) | |||
| sqrt_two = self.sqrt(self.const(2.0)) | |||
| sample_norm = C.normal(sample_shape, mean_zero, sd_one, self.seed) | |||
| sample_norm = self.normal(sample_shape, mean_zero, sd_one) | |||
| sample_uniform = 0.5 * (1 + self.erf(self.realdiv(sample_norm, sqrt_two))) | |||
| sample = self.less(sample_uniform, probs1) | |||
| sample = self.cast(sample, self._dtype) | |||
| @@ -15,7 +15,6 @@ | |||
| """Normal Distribution""" | |||
| import numpy as np | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import composite as C | |||
| from .distribution import Distribution | |||
| from ._utils.utils import convert_to_batch, check_greater_equal_zero | |||
| from ...common import dtype as mstype | |||
| @@ -61,7 +60,6 @@ class Normal(Distribution): | |||
| else: | |||
| self._mean_value = mean | |||
| self._sd_value = sd | |||
| self.seed = seed | |||
| #ops needed for the class | |||
| self.exp = P.Exp() | |||
| @@ -72,6 +70,7 @@ class Normal(Distribution): | |||
| self.sqrt = P.Sqrt() | |||
| self.realdiv = P.RealDiv() | |||
| self.expm1 = P.Expm1() if get_context('device_target') == 'Ascend' else self._expm1_by_step | |||
| self.normal = P.Normal(seed=seed) | |||
| self.shape = P.Shape() | |||
| self.zeroslike = P.ZerosLike() | |||
| self.const = P.ScalarToArray() | |||
| @@ -164,7 +163,7 @@ class Normal(Distribution): | |||
| sample_shape = shape + batch_shape | |||
| mean_zero = self.const(0.0) | |||
| sd_one = self.const(1.0) | |||
| sample_norm = C.normal(sample_shape, mean_zero, sd_one, self.seed) | |||
| sample_norm = self.normal(sample_shape, mean_zero, sd_one) | |||
| sample = self.add(mean, self.mul(sample_norm, sd)) | |||
| return sample | |||
| return None | |||
| @@ -27,7 +27,6 @@ from .clip_ops import clip_by_value | |||
| from .multitype_ops.add_impl import hyper_add | |||
| from .multitype_ops.ones_like_impl import ones_like | |||
| from .multitype_ops.zeros_like_impl import zeros_like | |||
| from .random_ops import normal | |||
| __all__ = [ | |||
| @@ -48,5 +47,4 @@ __all__ = [ | |||
| 'zeros_like', | |||
| 'ones_like', | |||
| 'zip_operation', | |||
| 'normal', | |||
| 'clip_by_value',] | |||
| @@ -1,63 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Operations for random number generatos.""" | |||
| from mindspore.ops.primitive import constexpr | |||
| from .. import operations as P | |||
| # set graph-level RNG seed | |||
| _GRAPH_SEED = 0 | |||
| @constexpr | |||
| def set_seed(seed): | |||
| global _GRAPH_SEED | |||
| _GRAPH_SEED = seed | |||
| @constexpr | |||
| def get_seed(): | |||
| return _GRAPH_SEED | |||
| def normal(shape, mean, stddev, seed): | |||
| """ | |||
| Generates random numbers according to the Normal (or Gaussian) random number distribution. | |||
| It is defined as: | |||
| Args: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. | |||
| - **mean** (Tensor) - The mean μ distribution parameter, which specifies the location of the peak. | |||
| With float32 data type. | |||
| - **stddev** (Tensor) - The deviation σ distribution parameter. With float32 data type. | |||
| - **seed** (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers. | |||
| Default: 0. | |||
| Returns: | |||
| Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev. | |||
| The dtype is float32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> mean = Tensor(1.0, mstype.float32) | |||
| >>> stddev = Tensor(1.0, mstype.float32) | |||
| >>> output = C.normal(shape, mean, stddev, seed=5) | |||
| """ | |||
| set_seed(10) | |||
| seed1 = get_seed() | |||
| seed2 = seed | |||
| stdnormal = P.StandardNormal(seed1, seed2) | |||
| rnd = stdnormal(shape) | |||
| value = rnd * stddev + mean | |||
| return value | |||
| @@ -55,7 +55,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A | |||
| Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, | |||
| Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps) | |||
| from .random_ops import (RandomChoiceWithMask, StandardNormal) | |||
| from .random_ops import (RandomChoiceWithMask, Normal) | |||
| from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm, | |||
| BiasAdd, Conv2D, | |||
| DepthwiseConv2dNative, | |||
| @@ -170,7 +170,7 @@ __all__ = [ | |||
| 'HSigmoid', | |||
| 'Tanh', | |||
| 'RandomChoiceWithMask', | |||
| 'StandardNormal', | |||
| 'Normal', | |||
| 'ResizeBilinear', | |||
| 'ScalarSummary', | |||
| 'ImageSummary', | |||
| @@ -21,48 +21,6 @@ from ...common import dtype as mstype | |||
| from ..primitive import PrimitiveWithInfer, prim_attr_register | |||
| class StandardNormal(PrimitiveWithInfer): | |||
| r""" | |||
| Generates random numbers according to the standard Normal (or Gaussian) random number distribution. | |||
| Args: | |||
| seed (int): Random seed. Default: 0. | |||
| seed2 (int): Random seed2. Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||
| Outputs: | |||
| Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev. | |||
| The dtype is float32. | |||
| Examples: | |||
| >>> shape = (4, 16) | |||
| >>> stdnormal = P.StandardNormal(seed=2) | |||
| >>> output = stdnormal(shape) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0, seed2=0): | |||
| """Init StandardNormal""" | |||
| self.init_prim_io_names(inputs=['shape'], outputs=['output']) | |||
| validator.check_value_type('seed', seed, [int], self.name) | |||
| validator.check_value_type('seed2', seed2, [int], self.name) | |||
| def __infer__(self, shape): | |||
| shape_v = shape["value"] | |||
| if shape_v is None: | |||
| raise ValueError(f"For {self.name}, shape must be const.") | |||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||
| for i, shape_i in enumerate(shape_v): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||
| out = { | |||
| 'shape': shape_v, | |||
| 'dtype': mstype.float32, | |||
| 'value': None} | |||
| return out | |||
| class RandomChoiceWithMask(PrimitiveWithInfer): | |||
| """ | |||
| Generates a random samply as index tensor with a mask tensor from a given tensor. | |||
| @@ -106,3 +64,47 @@ class RandomChoiceWithMask(PrimitiveWithInfer): | |||
| def infer_dtype(self, x_dtype): | |||
| validator.check_tensor_type_same({'x': x_dtype}, [mstype.bool_], self.name) | |||
| return (mstype.int32, mstype.bool_) | |||
| class Normal(PrimitiveWithInfer): | |||
| """ | |||
| Generates random samples from a normal(Gaussian) distribution. | |||
| Args: | |||
| seed (int): Random seed. Default: 0. | |||
| Inputs: | |||
| - **shape** (tuple[int]) - The shape of output tensor. Only constant value is allowed. | |||
| - **mean** (Tensor) - The mean of the distribution, with float32 data type. | |||
| - **stddev** (Tensor) - The standard deviation of the distribution, with float32 data type. | |||
| Outputs: | |||
| Tensor, with the given shape from the specific distribution and float32 data type. | |||
| Examples: | |||
| >>> normal = P.Normal() | |||
| >>> mean = Tensor(0., mstype.float32) | |||
| >>> stddev = Tensor(1., mstype.float32) | |||
| >>> out = normal((32, 3, 3), mean, stddev) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, seed=0): | |||
| """Init Normal""" | |||
| validator.check_value_type("seed", seed, [int], self.name) | |||
| def __infer__(self, shape, mean, stddev): | |||
| shape_value = shape["value"] | |||
| if shape_value is None: | |||
| raise ValueError(f"For {self.name}, shape must be const.") | |||
| validator.check_value_type("shape", shape_value, [tuple], self.name) | |||
| for i, shape_i in enumerate(shape_value): | |||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GE, self.name) | |||
| validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name) | |||
| validator.check_tensor_type_same({"stddev": stddev["dtype"]}, [mstype.float32], self.name) | |||
| out = {"shape": shape_value, | |||
| "dtype": mstype.float32, | |||
| "value": None} | |||
| return out | |||
| @@ -1,56 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.ops import composite as C | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| class Net(nn.Cell): | |||
| def __init__(self, shape, seed=0): | |||
| super(Net, self).__init__() | |||
| self.shape = shape | |||
| self.seed = seed | |||
| def construct(self, mean, stddev): | |||
| return C.normal(self.shape, mean, stddev, self.seed) | |||
| def test_net_1D(): | |||
| seed = 10 | |||
| shape = (3, 2, 4) | |||
| mean = 1.0 | |||
| stddev = 1.0 | |||
| net = Net(shape, seed) | |||
| tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32) | |||
| output = net(tmean, tstddev) | |||
| assert output.shape == (3, 2, 4) | |||
| def test_net_ND(): | |||
| seed = 10 | |||
| shape = (3, 1, 2) | |||
| mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32) | |||
| stddev = np.array([1.0]).astype(np.float32) | |||
| net = Net(shape, seed) | |||
| tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32) | |||
| output = net(tmean, tstddev) | |||
| assert output.shape == (3, 2, 2) | |||
| @@ -533,10 +533,10 @@ class NormalNet(nn.Cell): | |||
| def __init__(self, shape=None, seed=0): | |||
| super(NormalNet, self).__init__() | |||
| self.shape = shape | |||
| self.seed = seed | |||
| self.normal = P.Normal(seed=seed) | |||
| def construct(self, mean, stddev): | |||
| out = C.normal(self.shape, mean, stddev, self.seed) | |||
| out = self.normal(self.shape, mean, stddev) | |||
| return out | |||