| @@ -14,7 +14,6 @@ | |||||
| # ============================================================================ | # ============================================================================ | ||||
| """Bernoulli Distribution""" | """Bernoulli Distribution""" | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.ops import composite as C | |||||
| from .distribution import Distribution | from .distribution import Distribution | ||||
| from ._utils.utils import cast_to_tensor, check_prob | from ._utils.utils import cast_to_tensor, check_prob | ||||
| from ...common import dtype as mstype | from ...common import dtype as mstype | ||||
| @@ -54,7 +53,6 @@ class Bernoulli(Distribution): | |||||
| check_prob(self._probs) | check_prob(self._probs) | ||||
| else: | else: | ||||
| self._probs = probs | self._probs = probs | ||||
| self.seed = seed | |||||
| # ops needed for the class | # ops needed for the class | ||||
| self.log = P.Log() | self.log = P.Log() | ||||
| @@ -66,6 +64,7 @@ class Bernoulli(Distribution): | |||||
| self.const = P.ScalarToArray() | self.const = P.ScalarToArray() | ||||
| self.less = P.Less() | self.less = P.Less() | ||||
| self.cast = P.Cast() | self.cast = P.Cast() | ||||
| self.normal = P.Normal(seed=seed) | |||||
| self.erf = P.Erf() | self.erf = P.Erf() | ||||
| self.sqrt = P.Sqrt() | self.sqrt = P.Sqrt() | ||||
| @@ -160,7 +159,7 @@ class Bernoulli(Distribution): | |||||
| mean_zero = self.const(0.0) | mean_zero = self.const(0.0) | ||||
| sd_one = self.const(1.0) | sd_one = self.const(1.0) | ||||
| sqrt_two = self.sqrt(self.const(2.0)) | sqrt_two = self.sqrt(self.const(2.0)) | ||||
| sample_norm = C.normal(sample_shape, mean_zero, sd_one, self.seed) | |||||
| sample_norm = self.normal(sample_shape, mean_zero, sd_one) | |||||
| sample_uniform = 0.5 * (1 + self.erf(self.realdiv(sample_norm, sqrt_two))) | sample_uniform = 0.5 * (1 + self.erf(self.realdiv(sample_norm, sqrt_two))) | ||||
| sample = self.less(sample_uniform, probs1) | sample = self.less(sample_uniform, probs1) | ||||
| sample = self.cast(sample, self._dtype) | sample = self.cast(sample, self._dtype) | ||||
| @@ -15,7 +15,6 @@ | |||||
| """Normal Distribution""" | """Normal Distribution""" | ||||
| import numpy as np | import numpy as np | ||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.ops import composite as C | |||||
| from .distribution import Distribution | from .distribution import Distribution | ||||
| from ._utils.utils import convert_to_batch, check_greater_equal_zero | from ._utils.utils import convert_to_batch, check_greater_equal_zero | ||||
| from ...common import dtype as mstype | from ...common import dtype as mstype | ||||
| @@ -61,7 +60,6 @@ class Normal(Distribution): | |||||
| else: | else: | ||||
| self._mean_value = mean | self._mean_value = mean | ||||
| self._sd_value = sd | self._sd_value = sd | ||||
| self.seed = seed | |||||
| #ops needed for the class | #ops needed for the class | ||||
| self.exp = P.Exp() | self.exp = P.Exp() | ||||
| @@ -72,6 +70,7 @@ class Normal(Distribution): | |||||
| self.sqrt = P.Sqrt() | self.sqrt = P.Sqrt() | ||||
| self.realdiv = P.RealDiv() | self.realdiv = P.RealDiv() | ||||
| self.expm1 = P.Expm1() if get_context('device_target') == 'Ascend' else self._expm1_by_step | self.expm1 = P.Expm1() if get_context('device_target') == 'Ascend' else self._expm1_by_step | ||||
| self.normal = P.Normal(seed=seed) | |||||
| self.shape = P.Shape() | self.shape = P.Shape() | ||||
| self.zeroslike = P.ZerosLike() | self.zeroslike = P.ZerosLike() | ||||
| self.const = P.ScalarToArray() | self.const = P.ScalarToArray() | ||||
| @@ -164,7 +163,7 @@ class Normal(Distribution): | |||||
| sample_shape = shape + batch_shape | sample_shape = shape + batch_shape | ||||
| mean_zero = self.const(0.0) | mean_zero = self.const(0.0) | ||||
| sd_one = self.const(1.0) | sd_one = self.const(1.0) | ||||
| sample_norm = C.normal(sample_shape, mean_zero, sd_one, self.seed) | |||||
| sample_norm = self.normal(sample_shape, mean_zero, sd_one) | |||||
| sample = self.add(mean, self.mul(sample_norm, sd)) | sample = self.add(mean, self.mul(sample_norm, sd)) | ||||
| return sample | return sample | ||||
| return None | return None | ||||
| @@ -27,7 +27,6 @@ from .clip_ops import clip_by_value | |||||
| from .multitype_ops.add_impl import hyper_add | from .multitype_ops.add_impl import hyper_add | ||||
| from .multitype_ops.ones_like_impl import ones_like | from .multitype_ops.ones_like_impl import ones_like | ||||
| from .multitype_ops.zeros_like_impl import zeros_like | from .multitype_ops.zeros_like_impl import zeros_like | ||||
| from .random_ops import normal | |||||
| __all__ = [ | __all__ = [ | ||||
| @@ -48,5 +47,4 @@ __all__ = [ | |||||
| 'zeros_like', | 'zeros_like', | ||||
| 'ones_like', | 'ones_like', | ||||
| 'zip_operation', | 'zip_operation', | ||||
| 'normal', | |||||
| 'clip_by_value',] | 'clip_by_value',] | ||||
| @@ -1,63 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Operations for random number generatos.""" | |||||
| from mindspore.ops.primitive import constexpr | |||||
| from .. import operations as P | |||||
| # set graph-level RNG seed | |||||
| _GRAPH_SEED = 0 | |||||
| @constexpr | |||||
| def set_seed(seed): | |||||
| global _GRAPH_SEED | |||||
| _GRAPH_SEED = seed | |||||
| @constexpr | |||||
| def get_seed(): | |||||
| return _GRAPH_SEED | |||||
| def normal(shape, mean, stddev, seed): | |||||
| """ | |||||
| Generates random numbers according to the Normal (or Gaussian) random number distribution. | |||||
| It is defined as: | |||||
| Args: | |||||
| - **shape** (tuple) - The shape of random tensor to be generated. | |||||
| - **mean** (Tensor) - The mean μ distribution parameter, which specifies the location of the peak. | |||||
| With float32 data type. | |||||
| - **stddev** (Tensor) - The deviation σ distribution parameter. With float32 data type. | |||||
| - **seed** (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers. | |||||
| Default: 0. | |||||
| Returns: | |||||
| Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev. | |||||
| The dtype is float32. | |||||
| Examples: | |||||
| >>> shape = (4, 16) | |||||
| >>> mean = Tensor(1.0, mstype.float32) | |||||
| >>> stddev = Tensor(1.0, mstype.float32) | |||||
| >>> output = C.normal(shape, mean, stddev, seed=5) | |||||
| """ | |||||
| set_seed(10) | |||||
| seed1 = get_seed() | |||||
| seed2 = seed | |||||
| stdnormal = P.StandardNormal(seed1, seed2) | |||||
| rnd = stdnormal(shape) | |||||
| value = rnd * stddev + mean | |||||
| return value | |||||
| @@ -55,7 +55,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A | |||||
| Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, | Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, | ||||
| Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps) | Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps) | ||||
| from .random_ops import (RandomChoiceWithMask, StandardNormal) | |||||
| from .random_ops import (RandomChoiceWithMask, Normal) | |||||
| from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm, | from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm, | ||||
| BiasAdd, Conv2D, | BiasAdd, Conv2D, | ||||
| DepthwiseConv2dNative, | DepthwiseConv2dNative, | ||||
| @@ -170,7 +170,7 @@ __all__ = [ | |||||
| 'HSigmoid', | 'HSigmoid', | ||||
| 'Tanh', | 'Tanh', | ||||
| 'RandomChoiceWithMask', | 'RandomChoiceWithMask', | ||||
| 'StandardNormal', | |||||
| 'Normal', | |||||
| 'ResizeBilinear', | 'ResizeBilinear', | ||||
| 'ScalarSummary', | 'ScalarSummary', | ||||
| 'ImageSummary', | 'ImageSummary', | ||||
| @@ -21,48 +21,6 @@ from ...common import dtype as mstype | |||||
| from ..primitive import PrimitiveWithInfer, prim_attr_register | from ..primitive import PrimitiveWithInfer, prim_attr_register | ||||
| class StandardNormal(PrimitiveWithInfer): | |||||
| r""" | |||||
| Generates random numbers according to the standard Normal (or Gaussian) random number distribution. | |||||
| Args: | |||||
| seed (int): Random seed. Default: 0. | |||||
| seed2 (int): Random seed2. Default: 0. | |||||
| Inputs: | |||||
| - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. | |||||
| Outputs: | |||||
| Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev. | |||||
| The dtype is float32. | |||||
| Examples: | |||||
| >>> shape = (4, 16) | |||||
| >>> stdnormal = P.StandardNormal(seed=2) | |||||
| >>> output = stdnormal(shape) | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self, seed=0, seed2=0): | |||||
| """Init StandardNormal""" | |||||
| self.init_prim_io_names(inputs=['shape'], outputs=['output']) | |||||
| validator.check_value_type('seed', seed, [int], self.name) | |||||
| validator.check_value_type('seed2', seed2, [int], self.name) | |||||
| def __infer__(self, shape): | |||||
| shape_v = shape["value"] | |||||
| if shape_v is None: | |||||
| raise ValueError(f"For {self.name}, shape must be const.") | |||||
| validator.check_value_type("shape", shape_v, [tuple], self.name) | |||||
| for i, shape_i in enumerate(shape_v): | |||||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) | |||||
| out = { | |||||
| 'shape': shape_v, | |||||
| 'dtype': mstype.float32, | |||||
| 'value': None} | |||||
| return out | |||||
| class RandomChoiceWithMask(PrimitiveWithInfer): | class RandomChoiceWithMask(PrimitiveWithInfer): | ||||
| """ | """ | ||||
| Generates a random samply as index tensor with a mask tensor from a given tensor. | Generates a random samply as index tensor with a mask tensor from a given tensor. | ||||
| @@ -106,3 +64,47 @@ class RandomChoiceWithMask(PrimitiveWithInfer): | |||||
| def infer_dtype(self, x_dtype): | def infer_dtype(self, x_dtype): | ||||
| validator.check_tensor_type_same({'x': x_dtype}, [mstype.bool_], self.name) | validator.check_tensor_type_same({'x': x_dtype}, [mstype.bool_], self.name) | ||||
| return (mstype.int32, mstype.bool_) | return (mstype.int32, mstype.bool_) | ||||
| class Normal(PrimitiveWithInfer): | |||||
| """ | |||||
| Generates random samples from a normal(Gaussian) distribution. | |||||
| Args: | |||||
| seed (int): Random seed. Default: 0. | |||||
| Inputs: | |||||
| - **shape** (tuple[int]) - The shape of output tensor. Only constant value is allowed. | |||||
| - **mean** (Tensor) - The mean of the distribution, with float32 data type. | |||||
| - **stddev** (Tensor) - The standard deviation of the distribution, with float32 data type. | |||||
| Outputs: | |||||
| Tensor, with the given shape from the specific distribution and float32 data type. | |||||
| Examples: | |||||
| >>> normal = P.Normal() | |||||
| >>> mean = Tensor(0., mstype.float32) | |||||
| >>> stddev = Tensor(1., mstype.float32) | |||||
| >>> out = normal((32, 3, 3), mean, stddev) | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self, seed=0): | |||||
| """Init Normal""" | |||||
| validator.check_value_type("seed", seed, [int], self.name) | |||||
| def __infer__(self, shape, mean, stddev): | |||||
| shape_value = shape["value"] | |||||
| if shape_value is None: | |||||
| raise ValueError(f"For {self.name}, shape must be const.") | |||||
| validator.check_value_type("shape", shape_value, [tuple], self.name) | |||||
| for i, shape_i in enumerate(shape_value): | |||||
| validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GE, self.name) | |||||
| validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name) | |||||
| validator.check_tensor_type_same({"stddev": stddev["dtype"]}, [mstype.float32], self.name) | |||||
| out = {"shape": shape_value, | |||||
| "dtype": mstype.float32, | |||||
| "value": None} | |||||
| return out | |||||
| @@ -1,56 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.common import dtype as mstype | |||||
| from mindspore.ops import composite as C | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, shape, seed=0): | |||||
| super(Net, self).__init__() | |||||
| self.shape = shape | |||||
| self.seed = seed | |||||
| def construct(self, mean, stddev): | |||||
| return C.normal(self.shape, mean, stddev, self.seed) | |||||
| def test_net_1D(): | |||||
| seed = 10 | |||||
| shape = (3, 2, 4) | |||||
| mean = 1.0 | |||||
| stddev = 1.0 | |||||
| net = Net(shape, seed) | |||||
| tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32) | |||||
| output = net(tmean, tstddev) | |||||
| assert output.shape == (3, 2, 4) | |||||
| def test_net_ND(): | |||||
| seed = 10 | |||||
| shape = (3, 1, 2) | |||||
| mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32) | |||||
| stddev = np.array([1.0]).astype(np.float32) | |||||
| net = Net(shape, seed) | |||||
| tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32) | |||||
| output = net(tmean, tstddev) | |||||
| assert output.shape == (3, 2, 2) | |||||
| @@ -533,10 +533,10 @@ class NormalNet(nn.Cell): | |||||
| def __init__(self, shape=None, seed=0): | def __init__(self, shape=None, seed=0): | ||||
| super(NormalNet, self).__init__() | super(NormalNet, self).__init__() | ||||
| self.shape = shape | self.shape = shape | ||||
| self.seed = seed | |||||
| self.normal = P.Normal(seed=seed) | |||||
| def construct(self, mean, stddev): | def construct(self, mean, stddev): | ||||
| out = C.normal(self.shape, mean, stddev, self.seed) | |||||
| out = self.normal(self.shape, mean, stddev) | |||||
| return out | return out | ||||